Control of crowds: analysis and numerics

Relatore:  Francesco Rossi - Aix-Marseille Université
  giovedì 19 maggio 2016 alle ore 11.00 Rinfresco 10.45, inizio seminario 11.00
In this talk, we first present transport equations with non-local velocities, that are used in several models of pedestrian crowds, road traffic and opinion dynamics. We describe a complete framework for existence and uniqueness of solutions in Wasserstein spaces [1,2]. We then define some numerical schemes to compute solutions, and prove their convergence [1]. Finally, we describe our recent results of control of transport equations, focusing in particular on cooperative crowds, such as the Cucker-Smale model [3].

[1] B. Piccoli, F. Rossi, Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Applicandae Mathematicae, 124, pp. 73-105, 2013.
[2] P. Goatin, F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Comm. Math Sciences, to appear, arXiv:1510.04461.
[3] B. Piccoli, F. Rossi, E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Mathematical Analysis 47, no. 6, pp. 4685-4719, 2015.


Ca' Vignal - Piramide, Piano 0, Sala Verde


Referente esterno
Antonio Marigonda

Data pubblicazione
25 aprile 2016

Offerta formativa