Pubblicazioni

On the mosaic method for many-dimensional modal logics: a case study combining tense and modal operators  (2013)

Autori:
Carlos, Caleiro; Vigano', Luca; Volpe, Marco
Titolo:
On the mosaic method for many-dimensional modal logics: a case study combining tense and modal operators
Anno:
2013
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Formato:
A Stampa
Referee:
Nome rivista:
LOGICA UNIVERSALIS
ISSN Rivista:
1661-8297
N° Volume:
7
Numero o Fascicolo:
1
Intervallo pagine:
33-69
Parole chiave:
Modal Logic; Temporal Logic; Combination of Logics
Breve descrizione dei contenuti:
We present an extension of the mosaic method aimed at capturing many-dimensional modal logics. As a proof-of-concept, we define the method for logics arising from the combination of linear tense operators with an “orthogonal” S5-like modality. We show that the existence of a model for a given set of formulas is equivalent to the existence of a suitable set of partial models, called mosaics, and apply the technique not only in obtaining a proof of decidability and a proof of completeness for the corresponding Hilbert-style axiomatization, but also in the development of a mosaic-based tableau system. We further consider extensions for dealing with the case when interactions between the two dimensions exist, thus covering a wide class of bundled Ockhamist branching-time logics, and present for them some partial results, such as a non-analytic version of the tableau system.
Id prodotto:
79544
Handle IRIS:
11562/435197
depositato il:
3 febbraio 2014
ultima modifica:
18 settembre 2022
Citazione bibliografica:
Carlos, Caleiro; Vigano', Luca; Volpe, Marco, On the mosaic method for many-dimensional modal logics: a case study combining tense and modal operators «LOGICA UNIVERSALIS» , vol. 7 , n. 12013pp. 33-69

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

Progetti Collegati
Titolo Dipartimento Responsabili
Generalizing Truth-Functionality: GeTFun Dipartimento Informatica Luca Vigano'
<<indietro

Attività

Strutture