- Autori:
-
Dell’Anna R.; Lazzeri P.; Frisanco M. ; Monti F. ;Malvezzi Campeggi F. ; Gottardini E. ;Bersani M.
- Titolo:
-
Pollen discrimination and classification by Fourier Transform Infrared (FT-IR) microspectroscopy and machine learning
- Anno:
-
2009
- Tipologia prodotto:
-
Articolo in Rivista
- Tipologia ANVUR:
- Articolo su rivista
- Lingua:
-
Inglese
- Formato:
-
A Stampa
- Referee:
-
Sì
- Nome rivista:
- Analytical and Bioanalytical Chemistry
- ISSN Rivista:
- 1618-2642
- N° Volume:
-
394
- Numero o Fascicolo:
-
5
- Editore:
- Springer Verlag
- Intervallo pagine:
-
1443-1452
- Parole chiave:
-
FT-IR microspectroscopy - Allergic pollen - Supervised and unsupervised learning methods - Aerobiological monitoring networks
- Breve descrizione dei contenuti:
- The discrimination and classification of allergy-relevant pollen was studied for the first time by mid-infrared Fourier transform infrared (FT-IR) microspectroscopy together with unsupervised and supervised multivariate statistical methods. Pollen samples of 11 different taxa were collected, whose outdoor air concentration during the flowering time is typically measured by aerobiological monitoring networks. Unsupervised hierarchical cluster analysis provided valuable information about the reproducibility of FT-IR spectra of the same taxon acquired either from one pollen grain in a 25 x 25 microm2 area or from a group of grains inside a 100 x 100 microm2 area. As regards the supervised learning method, best results were achieved using a K nearest neighbors classifier and the leave-one-out cross-validation procedure on the dataset composed of single pollen grain spectra (overall accuracy 84%). FT-IR microspectroscopy is therefore a reliable method for discrimination and classification of allergenic pollen. The limits of its practical application to the monitoring performed in the aerobiological stations were also discussed.
- Id prodotto:
-
53013
- Handle IRIS:
-
11562/338127
- depositato il:
-
21 marzo 2012
- ultima modifica:
-
18 maggio 2021
- Citazione bibliografica:
-
Dell’Anna R.; Lazzeri P.; Frisanco M. ; Monti F. ;Malvezzi Campeggi F. ; Gottardini E. ;Bersani M.,
Pollen discrimination and classification by Fourier Transform Infrared (FT-IR) microspectroscopy and machine learning
«Analytical and Bioanalytical Chemistry»
, vol.
394
, n.
5
,
2009
,
pp. 1443-1452
Consulta la scheda completa presente nel
repository istituzionale della Ricerca di Ateneo