Pubblicazioni

The Yang–Mills–Higgs functional on complex line bundles: Asymptotics for critical points  (2025)

Autori:
Canevari, Giacomo; Dipasquale, Federico Luigi; Orlandi, Giandomenico
Titolo:
The Yang–Mills–Higgs functional on complex line bundles: Asymptotics for critical points
Anno:
2025
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Formato:
A Stampa
Referee:
Nome rivista:
ADVANCES IN CALCULUS OF VARIATIONS
ISSN Rivista:
1864-8258
N° Volume:
18
Numero o Fascicolo:
1
Intervallo pagine:
95-141
Parole chiave:
Ginzburg–Landau functional; complex line bundles; London limit; stationary varifolds; monotonicity formula; Yang–Mills–Higgs functional
Breve descrizione dei contenuti:
We consider a gauge-invariant Ginzburg–Landau functional (also known as Abelian Yang–Mills–Higgs model), on Hermitian line bundles over closed Riemannian manifolds of dimension n ≥ 3 . Assuming a logarithmic energy bound in the coupling parameter, we study the asymptotic behaviour of critical points in the London limit. After a convenient choice of the gauge, we show compactness of finite-energy critical points in Sobolev norms. Moreover, thanks to a suitable monotonicity formula, we prove that the energy densities of critical points, rescaled by the logarithm of the coupling parameter, converge to the weight measure of a stationary, rectifiable varifold of codimension 2.
Pagina Web:
https://www.degruyter.com/document/doi/10.1515/acv-2023-0064/html
Id prodotto:
141028
Handle IRIS:
11562/1136086
ultima modifica:
8 maggio 2025
Citazione bibliografica:
Canevari, Giacomo; Dipasquale, Federico Luigi; Orlandi, Giandomenico, The Yang–Mills–Higgs functional on complex line bundles: Asymptotics for critical points «ADVANCES IN CALCULUS OF VARIATIONS» , vol. 18 , n. 12025pp. 95-141

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi