Argomento | Persone | Descrizione |
---|---|---|
AI e robotica |
Alberto Castellini
Alessandro Farinelli Daniele Meli |
Applicazione di tecniche di intelligenza artificiale per aumentare il livello di autonomia dei sistemi robotici. Ciò include l'adattamento di algoritmi per la pianificazione autonoma e l'apprendimento per rinforzo per: i) gestire i vincoli cyber-fisici imposti dai robot che operano in scenari parzialmente osservabili e incerti; ii) garantire l'affidabilità e la robustezza dei sistemi robotici che operano in ambienti aperti (ad esempio, interagendo con gli esseri umani e altri sistemi robotici); iii) facilitare l'uso di sistemi robotici in applicazioni realistiche proponendo nuovi paradigmi di interazione con gli utenti (ad esempio, addestrare un robot a eseguire un compito piuttosto che specificare un programma di controllo). |
Pianificazione con incertezza |
Alberto Castellini
Alessandro Farinelli |
La pianificazione con incertezza si concentra su processi decisionali sequenziali in ambienti incerti, cioè in situazioni con informazioni imperfette. I processi decisionali di Markov (completamente o parzialmente osservabili) vengono utilizzati per rappresentare questi contesti. L'obiettivo della pianificazione con incertezza è generare politiche ottimali per questi problemi, vale a dire funzioni in grado di suggerire azioni ottimali nelle situazioni in cui l'agente opera. Le principali sfide riguardano la gestione di grandi problemi (scalabilità), l'acquisizione di nuove conoscenze sull'ambiente (adattabilità), la prevenzione di comportamenti indesiderati (safety), il miglioramento sicuro delle politiche (robustezza), l'interazione con gli esseri umani (human-in-the-loop), il supporto alla comprensione umana (spiegabilità), il collegamento tra pianificazione e apprendimento per rinforzo (RL basato su modelli), il collegamento tra pianificazione simbolica e probabilistica/data-driven. Tra gli approcci più recenti per affrontare queste sfide, i metodi online basati su Monte Carlo Tree Search hanno ottenuto ottimi risultati negli ultimi anni sia nei giochi strategici (ad esempio il gioco Go) sia nelle applicazioni del mondo reale (ad esempio, robotica, sistemi cyber-fisici e sistemi di supporto alle decisioni). |
Pianificazione multi-agente |
Alberto Castellini
Alessandro Farinelli |
La pianificazione multiagente si occupa di sviluppare approcci di pianificazione applicati ai sistemi multiagente. L'obiettivo principale di queste tecniche è generare soluzioni per il processi decisionali sequenziali che promuovano la sinergia tra più agenti autonomi per raggiungere obiettivi collettivi. Tra gli argomenti principali di questo campo ci sono l'ottimizzazione decentralizzata, la pianificazione di percorsi multiagente, l'apprendimento multiagente, la cooperazione e il coordinamento tra agenti. Strumenti importanti in questo ambiti sono, ad esempio, i coordination graph utilizzati nei recenti algoritmi di pianificazione multiagente ed in quelli di apprendimento per rinforzo multi-agente (MARL) in cui il coordinamento tra agenti è essenziale per portare a termine il compito. I grafici di coordinamento consentono di rappresentare il modo in cui gli agenti possono coordinarsi utilizzando una comunicazione tramite passaggio di messaggi. Le applicazioni della pianificazione multiagente si estendono su un ampio insieme di domini tra cui guida autonoma, logistica (ad esempio, gestione di flotte di robot autonomi), monitoraggio ambientale (flotte di droni mobili per l'acquisizione di dati). |
Pianificazione neurosimbolica |
Alberto Castellini
Alessandro Farinelli Daniele Meli |
L'IA neurosimbolica si concentra sulla combinazione dell'IA standard basata sui dati (ad esempio, l'apprendimento per rinforzo) con approcci simbolici (ad esempio, la programmazione logica e la programmazione logica induttiva), al fine di migliorare la spiegabilità dei sistemi di IA (ad esempio, gli agenti autonomi), la loro efficacia nell'interazione uomo-robot e favorire l'acquisizione incrementale di conoscenza e la generalizzazione nella pianificazione. |
******** CSS e script comuni siti DOL - frase 9957 ********