CATLOC - Localizzazione categorica: metodi e fondamenti

Data inizio
1 marzo 2017
Durata (mesi) 
24
Dipartimenti
Informatica
Responsabili (o referenti locali)
Angeleri Lidia

Le categorie triangolate sono presenti in tutte le aree della matematica che coinvolgono l’algebra omologica. In teoria delle rappresentazioni il fuoco è principalmente sulla categoria derivata dei moduli su un anello; in geometria algebrica il ruolo principale è dato dalla categoria dei fasci (quasi)coerenti; in categoria omotopica dalla categoria omotopica degli spettri.
Ogni area ha sviluppato approcci differenti per trattare i propri problemi. Ma esistono domande di carattere trasversale, che sono al centro di questo progetto.
Qual’è la natura di tali problemi? Essi sono principalmente legati alla classificazione a meno di equivalenza e alla scomposizione di categorie triangolate. Per le categorie derivate di categorie abeliane spesso le equivalenze sono parametrizzate da cosiddetti oggetti tilting. La teoria tilting, o più in generale, silting, fornisce un controllo su esistenza e forma delle equivalenze derivate e un modo per studiarne gli invarianti associati. In alternativa, per comprendere una struttura algebrica più ampia, si potrebbe voler decomporla in pezzi più piccoli. E' importante che questi pezzi più piccoli abbiano informazioni sufficienti per poter essere collegati in modo da descrivere significativamente la struttura più grande.
Le localizzazioni categoriche sono fondamentali per ottenere queste decomposizioni e per eseguire questa procedura. Tra le varie tecniche di localizzazione nel contesto delle categorie triangolate, hanno un ruolo centrale gli incollamenti, noti in geometria algebrica come formalismo dei sei funtori di Grothendieck. Gli incollamenti di categorie derivate di moduli sono spesso indotti da localizzazioni di anelli quali le localizzazioni universali.
Studieremo l'interazione fra le varie tecniche di localizzazione e esploreremo applicazioni a contesti rilevanti. Inoltre
discuteremo questioni computazionali e fondazionali sulle tecniche di localizzazione da affrontare attraverso la teoria
omotopica dei tipi sviluppata da Voevodsky ed altri.
 

Enti finanziatori:

Finanziamento: assegnato e gestito dal Dipartimento

Partecipanti al progetto

Lidia Angeleri
Professore ordinario
Fabiano Bonometti
Jorge Nuno Dos Santos Vitoria
Francesca Mantese
Professore associato
Jan Frederik Marks
Alessandro Rapa
Peter Michael Schuster
Professore ordinario
Daniel Wessel

Collaboratori esterni

Jan Stovicek
Charles University Prague
Ryo Takahashi
Nagoya University
Giuseppe Rosolini
Università di Genova
Silvana Bazzoni
Università di Padova Matematica
Maria Emilia Maietti
Università di Padova
Alberto Tonolo
Università di Padova Matematica
Aree di ricerca coinvolte dal progetto
Algebra, Geometria e Logica Matematica
Associative rings and algebras
Algebra, Geometria e Logica Matematica
Mathematical logic and foundations
Algebra, Geometria e Logica Matematica
Homological algebra

Attività

Strutture

Condividi