Mi occupo di progettazione ed analisi di algoritmi, ovvero della caratterizzazione delle migliori strategie possibili per problemi risolvibili mediante strumenti informatici. La mia attività di ricerca si è principalmente concentrata su algoritmi di classificazione basati su logica fuzzy, algoritmi di ricerca fault tolerant e codifica a correzione degli errori, problemi di ottimizzazione di strategie per la valutazione di funzioni Booleane con applicazioni al machine learning, teoria dell'informazione, compressione dati, information retrieval, problemi di ottimizzazione in bioinformatica.
Insegnamenti attivi nel periodo selezionato: 35.
Clicca sull'insegnamento per vedere orari e dettagli del corso.
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.
Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:
Argomento | Descrizione | Area di ricerca |
---|---|---|
Algoritmi per la Bioinformatica | Progettazione ed analisi di algoritmi per la rappresentazione, l'elaborazione e l'analisi di grosse moli di dati biologici (i cosiddetti dati -omici). Lo scopo è lo sviluppo e l'applicazione di procedure di analisi ed inferenza per la risoluzione di importanti problemi in "life sciences". Algoritmi per problemi di ricerca combinatoria (quali ad esempio, group testing), di apprendimento automatico (active learning), e data mining (con particolare attenzione a problemi per dati sequenziali e su reti), così come, approcci basati su analisi entropica dei dati e più in generale su diverse misure del contenuto informativo dei dati, possono essere usate per automatizzare in parte o del tutto il processo di estrazione di relazioni di causalità dai dati sperimentali, o nella costruzione di strumenti automatici di supporto nei processi di diagnosi e prognosi di malattie complesse. |
Bioinformatica e informatica medica
Life and medical sciences |
Algoritmi per la Bioinformatica | Progettazione ed analisi di algoritmi per la rappresentazione, l'elaborazione e l'analisi di grosse moli di dati biologici (i cosiddetti dati -omici). Lo scopo è lo sviluppo e l'applicazione di procedure di analisi ed inferenza per la risoluzione di importanti problemi in "life sciences". Algoritmi per problemi di ricerca combinatoria (quali ad esempio, group testing), di apprendimento automatico (active learning), e data mining (con particolare attenzione a problemi per dati sequenziali e su reti), così come, approcci basati su analisi entropica dei dati e più in generale su diverse misure del contenuto informativo dei dati, possono essere usate per automatizzare in parte o del tutto il processo di estrazione di relazioni di causalità dai dati sperimentali, o nella costruzione di strumenti automatici di supporto nei processi di diagnosi e prognosi di malattie complesse. |
Algoritmi, Logica e teoria della computazione
Life and medical sciences |
Ottimizzazione di Alberi di Decisione | Uno dei problemi più studiati in informatica relativamente all'analisi dei dati è il problema della classificazione, ovvero inferire una relazione predittiva tra valori di input e valori di output di un determinato fenomeno. Un problema di classificazione può essere studiato in termini di ottimizzazione di una funzione, ovvero come il problema di costruire un modello che massimizzi l'accuratezza della previsione - il numero di previsioni corrette - in un determinato data set. In particolare, il processo predittivo può essere modellato come un albero di decisione, e quindi il problema di costruire un classificatore efficiente diventa quello di ottimizzare un albero di decisione. Gli alberi di decisione sono strutture ampiamente usate in data mining e machine learning in quanto l'algoritmo che essi rappresentano è facilmente traducibile in linguaggio naturale mediante espressioni condizioinali di tipo SE-ALLORA. |
Bioinformatica e informatica medica
Machine learning |
Ottimizzazione di Alberi di Decisione | Uno dei problemi più studiati in informatica relativamente all'analisi dei dati è il problema della classificazione, ovvero inferire una relazione predittiva tra valori di input e valori di output di un determinato fenomeno. Un problema di classificazione può essere studiato in termini di ottimizzazione di una funzione, ovvero come il problema di costruire un modello che massimizzi l'accuratezza della previsione - il numero di previsioni corrette - in un determinato data set. In particolare, il processo predittivo può essere modellato come un albero di decisione, e quindi il problema di costruire un classificatore efficiente diventa quello di ottimizzare un albero di decisione. Gli alberi di decisione sono strutture ampiamente usate in data mining e machine learning in quanto l'algoritmo che essi rappresentano è facilmente traducibile in linguaggio naturale mediante espressioni condizioinali di tipo SE-ALLORA. |
Intelligenza Artificiale
Machine learning |
Titolo | Data inizio |
---|---|
Novel Methodologies and Tools for Next Generation Cyber Ranges - NOMEN | 21/05/24 |
Algoritmo di ottimizzazione dei riposi per autisti professionali | 22/02/24 |
Carica | Organo collegiale |
---|---|
coordinatore del corso di dottorato | Collegio dei Docenti del Dottorato in Informatica - Dipartimento Informatica |
componente | Collegio Didattico di Informatica - Dipartimento Informatica |
componente | Consiglio del Dipartimento di Informatica - Dipartimento Informatica |
componente | Consiglio della Scuola di Dottorato di Ateneo |
coordinatore del corso di dottorato in Informatica | Giunta del Dipartimento di Informatica - Dipartimento Informatica |
Coordinatore AQ di Dottorato | Gruppo AQ Dottorato in Informatica - Collegio dei Docenti del Dottorato in Informatica - Dipartimento Informatica |
******** CSS e script comuni siti DOL - frase 9957 ********p>