Sisto Baldo

Sisto,  October 5, 2008
Position
Associate Professor
Disciplinary sector
MAT/05 - MATHEMATICAL ANALYSIS
Office
Ca' Vignal 2,  Floor 2,  Room 8B
Telephone
045 802 7935
Fax
045 802 7068
E-mail
sisto|baldo*univr|it <== Replace | with . and * with @ to have the right email address.
Personal web page
http://profs.sci.univr.it/~baldo
Curriculum

Office Hours

Wednesday, Hours 12:30 PM - 2:30 PM,   Ca' Vignal 2, floor 2, room 8B

Insegnamenti

Risultano 33 insegnamenti attivi nel periodo selezionato.
Clicca sull'insegnamento per vedere orari e dettagli del corso

Teachings in the last two academic years
Department/Faculty Name Total credits Online Teacher credits Modules offered by this teacher
Department Computer Science  Functional analysis (2016/2017)   12  eLearning
Department Computer Science  Mathematical analysis 1 (2016/2017)   12  eLearning
Department Informatica  Mathematical analysis 2 (2016/2017)   12  eLearning (Teoria 1)
Department Computer Science  Functional analysis (2015/2016)   12    (Parte 1)
Department Computer Science  Mathematical analysis 1 (2015/2016)   12    (teoria)
Department Computer Science  Mathematical analysis 2 (2015/2016)   12    (teoria)
Department Informatica  Functional analysis (2014/2015)   12    (Parte 1)
Department Informatica  Mathematical analysis 1 (2014/2015)   12    (Teoria)
Department Informatica  Mathematical analysis 2 (2014/2015)   12    (Teoria)
Department Computer Science  Didattica della matematica (2014/2015)   6  eLearning DIDATTICA DELLA MATEMATICA 2
Department Informatica  Matematica e didattica della matematica (2014/2015)   8  eLearning MODULO B (teoria)
MODULO B (e-learning)
Department Computer Science  Functional analysis (2013/2014)   12    (Parte 1)
Department Computer Science  Mathematical analysis 1 (2013/2014)   12    (Teoria)
Department Computer Science  Mathematical analysis 2 (2013/2014)   12    (Teoria 1)
Department Informatica  Matematica e didattica della matematica (2013/2014)   8  eLearning MODULO B (Teoria)
MODULO B (E-learning)
Department Computer Science  Functional analysis (2012/2013)   12    (Teoria)
Department Computer Science  Mathematical analysis 1 (2012/2013)   12    (Teoria)
Department Computer Science  Mathematical analysis 2 (2012/2013)   12    (Teoria)
Department Computer Science  Functional anaysis (2011/2012)   12    (Teoria)
Department Computer Science  Mathematical analysis 1 (2011/2012)   12    (Teoria)
Department Computer Science  Mathematical analysis 2 (2011/2012)   12    (Teoria)
Department Computer Science  Functional anaysis (2010/2011)   12    (Teoria)
(Esercitazioni)
Department Computer Science  Mathematical analysis 1 (2010/2011)   12    (Teoria)
Department Computer Science  Mathematical analysis 2 (2010/2011)   12    (Teoria)
Department Computer Science  Functional anaysis (2009/2010)   12    (Teoria)
Department Computer Science  Mathematical analysis 1 (2009/2010)   12    (Teoria)
Department Computer Science  Mathematical analysis 2 (2009/2010)   12    (Teoria)
Department Computer Science  Mathematical analysis 1 (2008/2009)   9    mod.1
Department Computer Science  Mathematical analysis 1 (2008/2009)   6    mod.1
mod.2

Gli insegnamenti degli anni accademici precedenti sono consultabili dal catalogo dell'offerta formativa, specificando Anno Accademico e Docente.


 
Skills
Topic Description Research area
Existence theories Minimal surfaces. Calculus of variations on manifolds. Matematica - applicazioni e modelli
Calculus of variations and optimal control; optimization - -
Manifolds Geometric variational and evolution problems: minimal surfaces, motion by mean curvature. Optimal mass transport theory. Matematica - applicazioni e modelli
Calculus of variations and optimal control; optimization - -
Optimality conditions Asymptotics of variational problems. Variational convergences and Gamma Convergence. Singular perturbations of variational problems. Matematica - applicazioni e modelli
Calculus of variations and optimal control; optimization - -
Variational principles of physics Variational problems from condensed matter and particle Physics (e.g. Ginzburg-Landau models for sperconductivity and superfluidity, Gross-Pitaevskii model for Bose-Einstein condensation, string theory) and their relation with minimal surfaces. Matematica - applicazioni e modelli
Calculus of variations and optimal control; optimization - -
Projects
Title Starting date
Trasporto ottimo di massa, disuguaglianze geometriche e funzionali e applicazioni (PRIN 2008 ESTERNO) 3/22/10
Metodi variazionali nella teoria del trasporto ottimo di massa e nella teoria geometrica della misura (PRIN 2006 ESTERNO) 2/9/07
Calcolo delle Variazioni (PRIN 2004 ESTERNO) 11/30/04
Calcolo delle Variazioni (PRIN 2002 ESTERNO) 12/16/02