Supervised Discriminative Classification in Quantum Machine Learning

Speaker:  David Windridge - Middlesex University London
  Thursday, September 28, 2017 at 4:00 PM
Quantum Machine Learning is a recent area of research initiated by the demonstrations of quantised variants of standard machine learning algorithms such as the Quantum Support Vector Machine (SVM) by Rebentrost, Mohseni & Lloyd and the Quantum K-Means algorithm of Aïmeur, Brassard and Gambs. The development of the quantum SVM can be regarded as particularly significant in that the classical SVM constitutes the exemplar instance of a  supervised binary classifier, i.e. an entity capable of learning an optimal discriminative decision hyperplane from labeled vectors. We explore this classifier in detail along with its Kernelised variants, as well as investigating an ensemble-based enhancement to enable variance-resilient quantum machine learning.

Programme Director
Alessandra Di Pierro

External reference
Publication date
September 22, 2017

Studying

Share