Pubblicazioni

MX-LSTM: Mixing Tracklets and Vislets to Jointly Forecast Trajectories and Head Poses  (2018)

Autori:
Hasan, Irtiza; Setti, Francesco; Tsesmelis, Theodore; Del Bue, Alessio; Galasso, Fabio; Cristani, Marco
Titolo:
MX-LSTM: Mixing Tracklets and Vislets to Jointly Forecast Trajectories and Head Poses
Anno:
2018
Tipologia prodotto:
Contributo in atti di convegno
Tipologia ANVUR:
Contributo in Atti di convegno
Lingua:
Inglese
Formato:
Elettronico
Titolo del Convegno:
IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION
Luogo:
Salt Lake City
Periodo:
Giugno 2018
Intervallo pagine:
6067-6076
Parole chiave:
Video surveillance, forecasting, deep learning
Breve descrizione dei contenuti:
Recent approaches on trajectory forecasting use tracklets to predict the future positions of pedestrians exploiting Long Short Term Memory (LSTM) architectures. This paper shows that adding vislets, that is, short sequences of head pose estimations, allows to increase significantly the trajectory forecasting performance. We then propose to use vislets in a novel framework called MX-LSTM, capturing the interplay between tracklets and vislets thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation. At the same time, MX-LSTM predicts the future head poses, increasing the standard capabilities of the long-term trajectory forecasting approaches. With standard head pose estimators and an attentional-based social pooling, MX-LSTM scores the new trajectory forecasting state-of-the-art in all the considered datasets (Zara01, Zara02, UCY, and TownCentre) with a dramatic margin when the pedestrians slow down, a case where most of the forecasting approaches struggle to provide an accurate solution.
Id prodotto:
105621
Handle IRIS:
11562/988634
ultima modifica:
2 dicembre 2022
Citazione bibliografica:
Hasan, Irtiza; Setti, Francesco; Tsesmelis, Theodore; Del Bue, Alessio; Galasso, Fabio; Cristani, Marco, MX-LSTM: Mixing Tracklets and Vislets to Jointly Forecast Trajectories and Head Poses  in Prooceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern RecognitionAtti di "IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION" , Salt Lake City , Giugno 2018 , 2018pp. 6067-6076

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi