Pubblicazioni

Supervised learning of bag-of-features shape descriptors using sparse coding  (2014)

Autori:
Roee, Litman; Alex, Bronstein; Michael, Bronstein; Castellani, Umberto
Titolo:
Supervised learning of bag-of-features shape descriptors using sparse coding
Anno:
2014
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Formato:
A Stampa
Referee:
Nome rivista:
COMPUTER GRAPHICS FORUM
ISSN Rivista:
0167-7055
N° Volume:
33
Numero o Fascicolo:
5
Intervallo pagine:
127-136
Parole chiave:
Bag of Words; shape descriptors; Metric learning
Breve descrizione dei contenuti:
We present a method for supervised learning of shape descriptors for shape retrieval applications. Many content-based shape retrieval approaches follow the bag-of-features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a ‘geometric dictionary’ using vector quantization. A major drawback of such approaches is that the dictionary is constructed in an unsupervised manner using clustering, unaware of the last stage of the process pooling of the local descriptors into a BoF, and comparison of the latter using some metric). In this paper, we replace the clustering with dictionary learning where every atom acts as a feature, followed by sparse coding and pooling to get the final BoF descriptor. Both the dictionary and the sparse codes can be learned in the supervised regime via bi-level optimization using a task-specific objective that promotes invariance desired in the specific application. We show significant performance improvement on several standard shape retrieval benchmarks.
Id prodotto:
82436
Handle IRIS:
11562/763369
depositato il:
22 luglio 2014
ultima modifica:
15 novembre 2022
Citazione bibliografica:
Roee, Litman; Alex, Bronstein; Michael, Bronstein; Castellani, Umberto, Supervised learning of bag-of-features shape descriptors using sparse coding «COMPUTER GRAPHICS FORUM» , vol. 33 , n. 52014pp. 127-136

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi