- Authors:
-
F. Bethuel; G. Orlandi
- Title:
-
Uniform estimates for the parabolic Ginzburg-Landau equation. A tribute to J. L. Lions.
- Year:
-
2002
- Type of item:
-
Articolo in Rivista
- Tipologia ANVUR:
- Articolo su rivista
- Language:
-
Inglese
- Format:
-
A Stampa
- Referee:
-
Sì
- Name of journal:
- ESAIM: Control, Optimization and Calculus of Variations
- ISSN of journal:
- 1292-8119
- N° Volume:
-
8
- :
- Edpsciences
- Page numbers:
-
219-238
- Keyword:
-
Ginzburg-Landau; parabolic equations; Hodge decomposition; Jacobians
- Short description of contents:
- We consider complex-valued solutions ue of the Ginzburg-Landau equation on a smooth bounded simply connected domain W of RN, N ³ 2, where e > 0 is a small parameter. We assume that the Ginzburg-Landau energy Ee(ue) verifies the bound (natural in the context) Ee(ue) M|log e|, where M0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of ue, as e® 0, is to establish uniform Lp bounds for the gradient, for some p > 1. We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation
- Web page:
-
http://cvgmt.sns.it/papers/betorl02/
- Product ID:
-
16317
- Handle IRIS:
-
11562/16317
- Deposited On:
-
December 3, 2007
- Last Modified:
-
August 16, 2021
- Bibliographic citation:
-
F. Bethuel; G. Orlandi,
Uniform estimates for the parabolic Ginzburg-Landau equation. A tribute to J. L. Lions.
«ESAIM: Control, Optimization and Calculus of Variations»
, vol.
8
,
2002
,
pp. 219-238
Consulta la scheda completa presente nel
repository istituzionale della Ricerca di Ateneo