The Yang–Mills–Higgs functional on complex line bundles: Asymptotics for critical points
Anno:
2025
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Formato:
A Stampa
Referee:
Sì
Nome rivista:
ADVANCES IN CALCULUS OF VARIATIONS
ISSN Rivista:
1864-8258
N° Volume:
18
Numero o Fascicolo:
1
Intervallo pagine:
95-141
Parole chiave:
Ginzburg–Landau functional; complex line bundles; London limit; stationary varifolds; monotonicity formula; Yang–Mills–Higgs functional
Breve descrizione dei contenuti:
We consider a gauge-invariant Ginzburg–Landau functional (also known as Abelian Yang–Mills–Higgs model), on Hermitian line bundles over closed Riemannian manifolds of dimension
n
≥
3
. Assuming a logarithmic energy bound in the coupling parameter, we study the asymptotic behaviour of critical points in the London limit. After a convenient choice of the gauge, we show compactness of finite-energy critical points in Sobolev norms. Moreover, thanks to a suitable monotonicity formula, we prove that the energy densities of critical points, rescaled by the logarithm of the coupling parameter, converge to the weight measure of a stationary, rectifiable varifold of codimension 2.