Pubblicazioni

Scalable Safe Policy Improvement via Monte Carlo Tree Search  (2023)

Autori:
Castellini, A.; Bianchi, F.; Zorzi, E.; Simao, T. D.; Farinelli, A.; Spaan, M. T. J.
Titolo:
Scalable Safe Policy Improvement via Monte Carlo Tree Search
Anno:
2023
Tipologia prodotto:
Contributo in atti di convegno
Tipologia ANVUR:
Contributo in Atti di convegno
Lingua:
Inglese
Nome rivista:
PROCEEDINGS OF MACHINE LEARNING RESEARCH
ISSN Rivista:
2640-3498
Titolo del Convegno:
International Conference on Machine Learning
Luogo:
Hawaii, USA
Periodo:
23-29 July 2023
Editore:
PMLR
Casa editrice:
PMLR
Intervallo pagine:
3732-3756
Parole chiave:
Safe policy improvement, Monte Carlo Tree Search, Scalability, SPIBB
Breve descrizione dei contenuti:
Algorithms for safely improving policies are important to deploy reinforcement learning approaches in real-world scenarios. In this work, we propose an algorithm, called MCTS-SPIBB, that computes safe policy improvement online using a Monte Carlo Tree Search based strategy. We theoretically prove that the policy generated by MCTS-SPIBB converges, as the number of simulations grows, to the optimal safely improved policy generated by Safe Policy Improvement with Baseline Bootstrapping (SPIBB), a popular algorithm based on policy iteration. Moreover, our empirical analysis performed on three standard benchmark domains shows that MCTS-SPIBB scales to significantly larger problems than SPIBB because it computes the policy online and locally, i.e., only in the states actually visited by the agent.
Pagina Web:
https://proceedings.mlr.press/v202/castellini23a/castellini23a.pdf
Id prodotto:
144314
Handle IRIS:
11562/1113706
ultima modifica:
14 febbraio 2025
Citazione bibliografica:
Castellini, A.; Bianchi, F.; Zorzi, E.; Simao, T. D.; Farinelli, A.; Spaan, M. T. J., Scalable Safe Policy Improvement via Monte Carlo Tree Search in «PROCEEDINGS OF MACHINE LEARNING RESEARCH» PMLR  in Proceedings of the 40 th International Conference on Machine Learning, Honolulu, Hawaii, USAPMLRAtti di "International Conference on Machine Learning" , Hawaii, USA , 23-29 July 2023 , 2023pp. 3732-3756

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi