Variational approximation of functionals defined on 1-dimensional connected sets in Rn
Anno:
2021
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Referee:
No
Nome rivista:
ADVANCES IN CALCULUS OF VARIATIONS
ISSN Rivista:
1864-8258
N° Volume:
14
Numero o Fascicolo:
4
Intervallo pagine:
541-553
Parole chiave:
Calculus of variations; geometric measure theory; Gamma-convergence; convex relaxation; Gilbert-Steiner problem
Breve descrizione dei contenuti:
In this paper we consider the Euclidean Steiner tree problem and, more generally, (single sink) Gilbert-Steiner problems as prototypical examples of variational problems involving 1-dimensional connected sets in R-n. Following the analysis for the planar case presented in [M. Bonafini, G. Orlandi and E. Oudet, Variational approximation of functionals defined on 1-dimensional connected sets: The planar case, SIAM J. Math. Anal. 50 (2018), no. 6, 6307-6332], we provide a variational approximation through Ginzburg-Landau type energies proving a Gamma-convergence result for n >= 3.
Bonafini, Mauro; Orlandi, Giandomenico; Oudet, Édouard,
Variational approximation of functionals defined on 1-dimensional connected sets in Rn«ADVANCES IN CALCULUS OF VARIATIONS»
, vol. 14
, n. 4
, 2021
, pp. 541-553