Pubblicazioni

Variational approximation of functionals defined on 1-dimensional connected sets in Rn  (2021)

Autori:
Bonafini, Mauro; Orlandi, Giandomenico; Oudet, Édouard
Titolo:
Variational approximation of functionals defined on 1-dimensional connected sets in Rn
Anno:
2021
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Referee:
No
Nome rivista:
ADVANCES IN CALCULUS OF VARIATIONS
ISSN Rivista:
1864-8258
N° Volume:
14
Numero o Fascicolo:
4
Intervallo pagine:
541-553
Parole chiave:
Calculus of variations; geometric measure theory; Gamma-convergence; convex relaxation; Gilbert-Steiner problem
Breve descrizione dei contenuti:
In this paper we consider the Euclidean Steiner tree problem and, more generally, (single sink) Gilbert-Steiner problems as prototypical examples of variational problems involving 1-dimensional connected sets in R-n. Following the analysis for the planar case presented in [M. Bonafini, G. Orlandi and E. Oudet, Variational approximation of functionals defined on 1-dimensional connected sets: The planar case, SIAM J. Math. Anal. 50 (2018), no. 6, 6307-6332], we provide a variational approximation through Ginzburg-Landau type energies proving a Gamma-convergence result for n >= 3.
Pagina Web:
https://doi.org/10.1515/acv-2019-0031
Id prodotto:
134282
Handle IRIS:
11562/1095933
ultima modifica:
29 gennaio 2025
Citazione bibliografica:
Bonafini, Mauro; Orlandi, Giandomenico; Oudet, Édouard, Variational approximation of functionals defined on 1-dimensional connected sets in Rn «ADVANCES IN CALCULUS OF VARIATIONS» , vol. 14 , n. 42021pp. 541-553

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi