Giacomo Canevari

foto,  May 13, 2019
Position
Temporary Assistant Professor
Academic sector
MATH-03/A - Mathematical Analysis
Research sector (ERC-2024)
PE1_8 - Analysis

PE1_11 - Theoretical aspects of partial differential equations

Research sector (ERC)
PE1_8 - Analysis

PE1_11 - Theoretical aspects of partial differential equations

Telephone
+390458027979
E-mail
giacomo|canevari*univr|it <== Replace | with . and * with @ to have the right email address.
Curriculum

I am a researcher in the Calculus of Variations and Partial Differential Equations, specialising in the analysis of models from Materials Science. I have been working mostly on problems related - directly or indirectly - to the mathematical modelling of liquid crystals. 

Modules

Modules running in the period selected: 27.
Click on the module to see the timetable and course details.

Course Name Total credits Online Teacher credits Modules offered by this teacher
Bachelor's degree in Applied Mathematics Dynamical Systems (2024/2025)   9  eLearning (Esercitazioni)
(Teoria)
Bachelor's degree in Bioinformatics Linear algebra and analysis [Matricole dispari] (2024/2025)   12  eLearning ANALISI MATEMATICA
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2024/2025)   6  eLearning
Master's degree in Mathematics Partial differential equations (2024/2025)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2023/2024)   9  eLearning (Teoria 1)
(Esercitazioni di teoria 1)
(Teoria 2)
Bachelor's degree in Bioinformatics Mathematical analysis [Matricole dispari] (2023/2024)   6  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2023/2024)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2022/2023)   9  eLearning (Esercitazioni di teoria 1)
(Teoria 2)
(Teoria 1)
Bachelor's degree in Bioinformatics Mathematical analysis [Matricole dispari] (2022/2023)   6  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2022/2023)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2021/2022)   9  eLearning (Teoria parte I)
(Esercitazioni parte II)
(Teoria parte II)
(Esercitazioni parte I)
Bachelor's degree in Bioinformatics Mathematical analysis [Matricole dispari] (2021/2022)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2020/2021)   9  eLearning (Parte II teoria)
(Parte I teoria)
Bachelor's degree in Applied Mathematics Dynamical Systems (2019/2020)   9  eLearning (Parte I esercitazioni)
Bachelor's degree in Bioinformatics Mathematical analysis (2019/2020)   6  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2019/2020)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2018/2019)   9  eLearning (Esercitazioni 2 parte II)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2018/2019)   6  eLearning (Esercitazioni)

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

MyUnivr

Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:

  • Eventi di Terza Missione: eventi di Public Engagement e Formazione Continua.
  • Insegnamenti di Terza Missione: insegnamenti che fanno parte di Corsi di Studio come Corsi di formazione continua, Corsi di perfezionamento e aggiornamento professionale, Corsi di perfezionamento, Master e Scuole di specializzazione.
Research interests
Topic Description Research area
Manifolds Geometric variational and evolution problems: minimal surfaces, motion by mean curvature. Optimal mass transport theory. Mathematics methods and models
Calculus of variations and optimal control; optimization
Manifolds Geometric variational and evolution problems: minimal surfaces, motion by mean curvature. Optimal mass transport theory. Algebra, Geometry, and Mathematical Logic
Calculus of variations and optimal control; optimization



Organization

Department facilities

Share