Francesca Mantese

foto,  December 16, 2015
Position
Associate Professor
Academic sector
MATH-02/A - Algebra
Research sector (ERC-2024)
PE1_2 - Algebra

Research sector (ERC)
PE1_2 - Algebra

Office
Ca' Vignal 2,  Floor 2,  Room 11
Telephone
+39 045 802 7978
E-mail
francesca|mantese*univr|it <== Replace | with . and * with @ to have the right email address.

Office Hours

Ricevimento su appuntamento

Curriculum

Modules

Modules running in the period selected: 53.
Click on the module to see the timetable and course details.

Course Name Total credits Online Teacher credits Modules offered by this teacher
Bachelor's degree in Applied Mathematics Algebra (2024/2025)   9  eLearning TEORIA DI GALOIS (Esercitazioni)
ELEMENTI DI ALGEBRA (Esercitazioni)
Master's degree in Mathematics Homological Algebra (2024/2025)   6  eLearning
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2024/2025)   12  eLearning ELEMENTI DI GEOMETRIA
ALGEBRA LINEARE
Master's degree in Mathematics Computational algebra (2023/2024)   6  eLearning
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2023/2024)   12  eLearning ELEMENTI DI GEOMETRIA
ALGEBRA LINEARE
Bachelor's degree in Applied Mathematics Algebra (2022/2023)   9  eLearning TEORIA DI GALOIS
ELEMENTI DI ALGEBRA
Master's degree in Mathematics Homological Algebra (2022/2023)   6  eLearning
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2022/2023)   12  eLearning ALGEBRA LINEARE
ELEMENTI DI GEOMETRIA (Parte 1)
Master's degree in Mathematics Computational algebra (2021/2022)   6  eLearning
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2021/2022)   12  eLearning ELEMENTI DI GEOMETRIA (Esercitazioni)
ALGEBRA LINEARE
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2020/2021)   12  eLearning ALGEBRA LINEARE
ELEMENTI DI GEOMETRIA (Teoria)
Master's degree in Mathematics Representation theory (2020/2021)   6  eLearning
Master's degree in Mathematics Computational algebra (2019/2020)   6  eLearning
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2019/2020)   12  eLearning ELEMENTI DI GEOMETRIA (Teoria)
ALGEBRA LINEARE
Master's degree in Mathematics Algebraic geometry (seminar course) (2018/2019)   6   
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2018/2019)   12  eLearning ELEMENTI DI GEOMETRIA (parte 1)
ALGEBRA LINEARE
Master's degree in Mathematics Representation theory (2018/2019)   6  eLearning (Teoria 1)
Master's degree in Mathematics Computational algebra (2017/2018)   6  eLearning
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2017/2018)   12  eLearning ALGEBRA LINEARE
Master's degree in Mathematics Computational algebra (2015/2016)   6   
Bachelor's degree in Applied Mathematics Algebra (2014/2015)   6   
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2014/2015)   12    ELEMENTI DI GEOMETRIA (Teoria)
Master's degree in Mathematics Representation theory (2014/2015)   6   
Bachelor's degree in Applied Mathematics Algebra (2013/2014)   6    (esercitazioni 2)
Master's degree in Mathematics Computational algebra (2013/2014)   6    (Teoria)
(Esercitazioni)
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2013/2014)   12    ELEMENTI DI GEOMETRIA (Teoria 1)
Bachelor's degree in Applied Mathematics Algebra (2012/2013)   6    (Esercitazioni)
Bachelor's degree in Applied Mathematics Linear Algebra and Elements of Geometry (2012/2013)   12    ELEMENTI DI GEOMETRIA (Esercitazioni)
ALGEBRA LINEARE (Esercitazioni)
Master's degree in Mathematics Representation theory (2012/2013)   6    (Teoria)
Master's degree in Mathematics Computational algebra (lm) (2011/2012)   6   
Master's degree in Mathematics Representation theory (2010/2011)   6   
Master's degree in Mathematics Computational algebra (lm) (2009/2010)   6   
Bachelor in Computer Science (until 2008-2009 academic year) Basic Mathematics (2008/2009)   4   
Degree in Applied Mathematics (until a.y. 2008/2009) Computational algebra (2008/2009)   4    modulo avanzato
Degree in Applied Mathematics (until a.y. 2008/2009) Linear Algebra and Elements of Geometry (2008/2009)   9    modulo di base
Bachelor in Computer Science (until 2008-2009 academic year) Basic Mathematics (2007/2008)   4   
Degree in Applied Mathematics (until a.y. 2008/2009) Computational algebra (2007/2008)   4    modulo avanzato
Degree in Applied Mathematics (until a.y. 2008/2009) Linear Algebra and Elements of Geometry (2007/2008)   9    modulo di base
Bachelor in Computer Science (until 2008-2009 academic year) Basic Mathematics (2006/2007)   4   
Degree in Applied Mathematics (until a.y. 2008/2009) Linear Algebra and Elements of Geometry (2006/2007)   9    Modulo base
Bachelor's degree in Multimedia Information Technology (until 2008-2009) Basic Mathematics (2005/2006)   4   
Bachelor in Computer Science (until 2008-2009 academic year) Basic Mathematics [Sezione B] (2004/2005)   4     

Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:

  • Eventi di Terza Missione: eventi di Public Engagement e Formazione Continua.
  • Insegnamenti di Terza Missione: insegnamenti che fanno parte di Corsi di Studio come Corsi di formazione continua, Corsi di perfezionamento e aggiornamento professionale, Corsi di perfezionamento, Master e Scuole di specializzazione.

Research groups

Algebra
The group works in representation theory of algebras.
INdAM - Research Unit at the University of Verona
We collect here the scientific activities of the Research Unit of Istituto Nazionale di Alta Matematica INdAM at the University of Verona
Research interests
Topic Description Research area
Triangulated categories The study of abstract concepts and methods arising from homological algebra, including the study of important reduction techniques for abelian or triangulated categories, such as torsion pairs, t-structures, localization theory. Algebra, Geometry, and Mathematical Logic
Category theory; homological algebra
Representation theory of algebras Representation theory studies rings and algebras in terms of their representations, that is, by investigating the associated module categories and their derived categories. One of the main goals is to understand the complexity of these categories. Particular attention is devoted to finite dimensional algebras over a field and to the role played by infinite dimensional modules over such algebras. Algebra, Geometry, and Mathematical Logic
Associative rings and algebras
Silting and tilting theory Tilting theory and its recent development into silting theory are universal methods for comparing and constructing equivalences between different categories. These techniques have far-reaching applications, ranging from representation theory to algebraic geometry, algebraic topology and cluster algebras. Algebra, Geometry, and Mathematical Logic
Category theory; homological algebra
Projects
Title Starting date
Structures for Quivers, Algebras and Representations - SQUARE 9/28/23
Reducing complexity in algebra, logic, combinatorics (REDCOM) 1/1/20
PRIN 2017 - Categories, Algebras: Ring-Theoretical and Homological Approaches (CARTHA) 1/1/19
CATLOC - Categorical localisation: methods and foundations 3/1/17
Strutture algebriche e loro applicazioni: categorie abeliane e derivate, entropia algebrica e rappresentazioni di algebre 10/1/12
Teoria tilting, localizazzione e purità in categorie di moduli e categorie derivate (PRIN 2009) 7/15/11
Differential graded categories 3/1/11
Teoria tilting e cotilting e generalizzazioni; applicazioni alle categorie derivate, alle categorie cluster, alla localizzazione, alle congetture omologiche e ad altri problemi aperti (PRIN 2007) 9/22/08
Algebras and cluster categories 3/1/08
Teoria tilting e cotilting per algebre di artin, anelli astratti e topologici. Confronto fra moduli di lunghezza finita e infinita. (PRIN 2005) 1/30/06
Decomposition and tilting theory in module, derived and cluster categories 3/1/05




Organization

Department facilities

Share