Paolo Dai Pra si occupa di Processi Stocastici e loro applicazoni alle Scienze Fisiche, Biologiche e Sociali. La maggior parte delle sue pubblicazioni recenti riguardano le seguenti tematiche:
1. Sistemi complessi nelle scieze biologiche e sociali
2. Proprietà geometriche e di scala dei processi stocastici
3. Convergenza all'equilibrio e disuguaglianze funzionali per sistemi di particelle interagenti
4. Giochi a campo medio
I principali risultati ottenuti comprendono:
- un principio di Grandi Deviazioni per sistemi disordinati;
- un teorema di dualità fra problemi di controllo stocastico e giochi dinamici;
- la prima dimostrazione della scala diffusiva del gap spettrale per processi zero-range;
- una parziale estensione a processi di salto della teoria di Bakry-Emery per diffusioni;
- l'introduzione di dinamiche dissipative con interazione a campo medio, e la dimostrazione del comportamento periodico collettivo in alcuni casi speciali.
Modules running in the period selected: 34.
Click on the module to see the timetable and course details.
Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:
Topic | Description | Research area |
---|---|---|
Mean field games and applications | In this research field, non-cooperative dynamic games with a large number of players are considered. With appropriate symmetry assumptions, the N-player game can be approximated by a limit game for a representative player, called a mean-field game. Such games are used to model the collective behavior of large communities. The research concerns theoretical aspects - existence and uniqueness of equilibria, convergence of the N-player problem… -, computational aspects - algorithms for finding approximate equilibria - and applications to different areas, in particular Social Sciences and Machine Learning. |
Quantitative Methods for Economics
Game theory, economics, social and behavioral sciences |
Large scale interacting random systems | This research field focuses on the study of complex systems composed of a large number of components that interact with each other according to probabilistic rules. The main goal is to understand how microscopic interactions give rise to the emergence of highly ordered or highly organized macroscopic collective behaviors, which are not easily predictable from the behavior of individual units. In more detail, the topics addressed include scaling limits, phase transitions, fluctuations, relaxation times, and applications to biology and social sciences. |
Mathematical methods and models
Stochastic analysis |
Office | Collegial Body |
---|---|
member | Information Engineering Teaching Committee - Department Department of Engineering for Innovation Medicine |
member | Commissione di Area ERASMUS - Department Biotechnology |
member | Computer Science Department Council - Department Computer Science |
Direttore Vicario | Computer Science Department Board - Department Computer Science |
******** CSS e script comuni siti DOL - frase 9957 ********