Il corso intende fornire i fondamenti teorici e le metodologie principali relative all’analisi e riconoscimento automatico di dati di qualsiasi tipo, detti tipicamente pattern. Questa disciplina è alla base o completa molte altre discipline di più larga diffusione come l’elaborazione delle immagini, la visione, l’intelligenza artificiale, l’analisi di grosse quantità di dati, le basi di dati, e numerose altre.
•Nel corso verrà data enfasi alle tecniche probabilistiche con particolar riferimento all’addestramento di sistemi volti al riconoscimento (anche di immagini, ma non solo) e alle reti neurali. •Le applicazioni che questa disciplina coinvolge sono molteplici. Tra queste ci sono le applicazioni legati all’elaborazione delle immagini e visione, data mining, la bioinformatica, analisi ed interpretazione di dati medicali e biologici (e.g., genomica, proteomica, sierologia, etc.), la biometria, l'imaging biomedicale, la videosorveglianza, la robotica, il riconoscimento della voce e numerose altre.
Introduzione: cos’è, a cosa serve, sistemi, applicazioni
•Riconoscimento e classificazione
•Estrazione e rappresentazione di caratteristiche (feature)
•Teoria della decisione di Bayes
•Stima dei parametri e metodi non parametrici
•Classificatori lineari, non lineari e funzioni discriminanti
•Cenni di Pattern Recognition di tipo sintattico
•Selezione di feature
•Reti neurali
•Metodi di classificazione non supervisionata (clustering)
•Metodi avanzati: Hidden Markov Models.
Il corso viene svolto in 32 ore di lezioni frontali e 12 ore di laboratorio. L'attività di laboratorio prevede la pratica e risoluzione di esercizi mediante l'uso di MATLAB volti all'apprendimento pratico e alla miglior comprensione della teoria svolta a lezione.
Author | Title | Publisher | Year | ISBN | Note |
C.M. Bishop | Neural Networks for Pattern Recognition | Oxford University Press | 1995 | Testo di approfondimento per argomenti specifici | |
R. Duda, P. Hart, D. Stork | Pattern Classification | Wiley | 2001 | Testo principale | |
S. Theodoridis, K. Koutroumbas | Pattern Recognition | Academic Press | 1998 | Testo secondario |
La verifica del profitto avverrà mediante un'attività di progetto e una breve prova orale. Il progetto riguarderà gli argomenti trattati a lezione con riferimento all'elaborazione delle immagini e visione, ma anche altre applicazioni potranno essere considerate. La prova orale verterà sui temi sviluppati a lezione e potrà essere sostituita da una prova scritta con brevi domande simili alla prova orale.
Il superamento della prova porta all'acquisizione di 5 crediti, ovvero di 1 unità didattica.
******** CSS e script comuni siti DOL - frase 9957 ********p>