Algebra, Geometry, and Mathematical Logic

This research area concerns three of the fundamental fields in pure mathematics: algebra, geometry and logic. Roughly speaking, algebra is the study of symmetry via mathematical structures with algebraic operations; geometry is concerned with properties of space including the concepts of distance and shape; and mathematical logic investigates the formal properties of mathematical systems including syntax (formal languages and calculi) and semantics (structures and models). The research groups working in this area at the University of Verona organise regular seminars, research activities, and host academic visitors from all over the world. Our research in algebra focuses on the representation theory of algebras, in particular, finite-dimensional algebras and Leavitt path algebras, localization theory, approximation theory, homological algebra, triangulated categories, t-structures and hearts, and spaces of Bridgeland stability conditions. In geometry we specialise in geometric mechanics, symplectic geometry and topology, including the study of Kähler and hyperkähler manifolds (in particular polygon and hyperpolygon spaces), moduli problems such as moduli of parabolic and parabolic Higgs bundles, equivariant cohomology, geometric quantization, cobordism, Gromov width and related topics. The logic group works on constructive algebra and analysis, Bishop set theory and type theory, higher-type computability theory and category theory, proof theory, Hilbert's program in abstract mathematics, especially the computational content of classical proofs with transfinite methods, logical methods in computer science, languages and logics for quantum computing.
Lidia Angeleri
Full Professor
Anna Barbieri
Temporary Assistant Professor
Alessio Cipriani
Temporary Assistant Professor
Georgios Dalezios
Temporary Assistant Professor
Rosanna Davison Laking
Associate Professor
Alessia Mandini
Temporary Assistant Professor
Francesca Mantese
Associate Professor
Iosif Petrakis
Temporary Assistant Professor
Peter Michael Schuster
Full Professor
Margherita Zorzi
Associate Professor
Research interests
Topic People Description
Algebraic geometry standard compliant  MSC
Vector bundles on curves and their moduli Alessia Mandini
Study of the geometric structure of moduli spaces of parabolic bundles and of parabolic Higgs bundles.
Enumerative invariants and related geometric structures Anna Barbieri
Alessio Cipriani
We are interested in geometric structures on complex manifolds (usually spaces of stability conditions on triangulated categories) exhibiting wall-crossing phenomena or encoding counting invariants of triangulated categories. The study of these structures is sometimes motivated by mirror symmetry.
Associative rings and algebras standard compliant  MSC
Purity in representation theory Lidia Angeleri
Rosanna Davison Laking
The theory of purity incorporates the study of pure-injective modules, definable subcategories and the Ziegler spectrum. Pure-injective modules are those that have a particular "compactness" property with respect to infinite systems of linear equations. Such modules play an important role in the model theory of modules, approximation theory and generalisations of Auslander-Reiten theory. The techniques involved can be extended to triangulated categories via categories of functors.
Representation theory of algebras Lidia Angeleri
Georgios Dalezios
Rosanna Davison Laking
Francesca Mantese
Representation theory studies rings and algebras in terms of their representations, that is, by investigating the associated module categories and their derived categories. One of the main goals is to understand the complexity of these categories. Particular attention is devoted to finite dimensional algebras over a field and to the role played by infinite dimensional modules over such algebras.
Category theory; homological algebra standard compliant  MSC
Triangulated categories Lidia Angeleri
Anna Barbieri
Alessio Cipriani
Georgios Dalezios
Rosanna Davison Laking
Francesca Mantese
The study of abstract concepts and methods arising from homological algebra, including the study of important reduction techniques for abelian or triangulated categories, such as torsion pairs, t-structures, localization theory.
Stability conditions Anna Barbieri
Alessio Cipriani
Stability conditions and stability spaces of triangulated and of abelian categories, in particular from representations of algebras and dg algebras.
Silting and tilting theory Lidia Angeleri
Rosanna Davison Laking
Francesca Mantese
Tilting theory and its recent development into silting theory are universal methods for comparing and constructing equivalences between different categories. These techniques have far-reaching applications, ranging from representation theory to algebraic geometry, algebraic topology and cluster algebras.
Mathematical logic and foundations standard compliant  MSC
Hilbert's Programme for Abstract Mathematics Peter Michael Schuster
Extracting the computational content of classical proofs in conceptual mathematics. Particular attention is paid to invocations of logical completeness in mathematical form, typically as variants of Zorn's Lemma.
Type Theory and Category Theory Iosif Petrakis
Martin Loef Type Theory is a foundational framework both for functional programming and constructive mathematics. Its recent extension, Homotopy Type Theory, revealed new, unexpected connections between algebraic topology and theoretical computer science. Certain categorical models of dependent types generate the, so-called, dependent category theory, and its dual, codependent category theory.
Proof theory and constructive mathematics Iosif Petrakis
Peter Michael Schuster
Proof theory at large studies mathematical proofs, which thus become themselves objects of mathematics. In a nutshell, the goal is to understand "what can be proved with what" and to gain computational information from proofs. Constructive mathematics aims at direct proofs from which one can read off algorithms; any such algorithm comes with a certificate of correctness for free, which just is the original proof.
General logic standard compliant  MSC
Proof theory, Linear logic, Type theory Margherita Zorzi
Sequent calculi for modal, linear and temporal logics. Natural deduction systems for modal, linear and temporal logics. Labelled deductive systems. Type systems for CPS. Proof nets for linear and classical logics. Deductive systems for quantum computability.
Gruppi di ricerca
Name Description URL
Algebra Il gruppo si occupa di teoria delle rappresentazioni di algebre http://profs.sci.univr.it/~angeleri/RT%20Verona.html
INdAM - Unità di Ricerca dell'Università di Verona Raccogliamo qui le attività scientifiche dell'Unità di Ricerca dell'Istituto Nazionale di alta Matematica INdAM presso l'Università di Verona
Logica Logica in matematica ed informatica. https://www.logicverona.it/
Quantum Informatics Laboratory - QUILAB Laboratorio di Informatica Quantistica https://quilab.github.io
Projects
Title Managers Sponsors Starting date Duration (months)
Nonlinear partial differential equations describing FROnt propagation, Geometric variational problems and Singularities - NFROGS Giandomenico Orlandi UE - Unione Europea 9/1/24 24
FIS - Large views of small phenomena: decompositions, localizations, and representation type - LAVIE Lidia Angeleri MUR - Ministero dell'Università e della Ricerca 7/15/24 60
Structures for Quivers, Algebras and Representations - SQUARE Lidia Angeleri MUR - Ministero dell'Università e della Ricerca 9/28/23 24
Reducing complexity in algebra, logic, combinatorics (REDCOM) Lidia Angeleri Fondazione Cariverona 1/1/20 36
PRIN 2017 - Categories, Algebras: Ring-Theoretical and Homological Approaches (CARTHA) Lidia Angeleri MUR - Ministero dell'Università e della Ricerca 1/1/19 36
FunSilting - Functorial techniques in silting theory Lidia Angeleri Unione Europea 11/1/18 24
Partecipazione a conferenza "ICRA 2018 - 18th International Conference on Representations of Algebras" Lidia Angeleri INdAM 8/7/18 0
A new dawn of Intuitionism: mathematical and philosophical advances Peter Michael Schuster John Templeton Foundation 12/1/17 33
CATLOC - Categorical localisation: methods and foundations Lidia Angeleri Ricerca di Base - assegnato e gestito dal Dipartimento 3/1/17 24
TTinDMod (FP7-PEOPLE-2012-IEF) Lidia Angeleri, Jorge Nuno Dos Santos Vitoria Unione Europea 9/2/13 24
Strutture algebriche e loro applicazioni: categorie abeliane e derivate, entropia algebrica e rappresentazioni di algebre Francesca Mantese, Lidia Angeleri Fondazione CARIPARO 10/1/12 36
Estructura de anillos, C*-álgebras y categorías de módulos Lidia Angeleri Ministerio de Ciencia e Innovación 1/1/12 36
Teoria tilting, localizazzione e purità in categorie di moduli e categorie derivate (PRIN 2009) Lidia Angeleri PRIN VALUTATO POSITIVAMENTE 7/15/11 12
Differential graded categories Francesca Mantese, Lidia Angeleri Università degli studi di Padova 3/1/11 24
Estructura y Clasificación de Anillos, Módulos y C*-álgebras Lidia Angeleri Ministerio de Ciencia e Innovación 1/1/09 36
Grup de Recerca en Teoria de Anells 2009-2013 Lidia Angeleri Generalitat de Catalunya 1/1/09 60
Teoria tilting e cotilting e generalizzazioni; applicazioni alle categorie derivate, alle categorie cluster, alla localizzazione, alle congetture omologiche e ad altri problemi aperti (PRIN 2007) Enrico Gregorio Ministero dell'Istruzione dell'Università e della Ricerca 9/22/08 24
Algebras and cluster categories Enrico Gregorio, Francesca Mantese, Lidia Angeleri Università degli studi di Padova 3/1/08 24
Teoria tilting e cotilting per algebre di artin, anelli astratti e topologici. Confronto fra moduli di lunghezza finita e infinita. (PRIN 2005) Enrico Gregorio Ministero dell'Istruzione dell'Università e della Ricerca 1/30/06 24
Álgebra no conmutativa: Anillos, Módulos y C*- álgebras Lidia Angeleri Ministerio de Ciencia e Innovación 1/1/06 36
Decomposition and tilting theory in module, derived and cluster categories Enrico Gregorio, Francesca Mantese, Lidia Angeleri Università degli studi di Padova 3/1/05 24
Grup de Recerca en Teoria de Anells 2005-2008 Lidia Angeleri Generalitat de Catalunya 1/1/05 36

Activities

Research facilities

Share