Mathematics methods and models

Research in this area is oriented towards the mathematical modelling, both from a theoretical and a numerical point of view, of a variety of phenomena arising in different areas of science, engineering, business, and industry. Typical applications include, for instance, quantum and classical fluid dynamics (nonlinear Schrödinger equations, advection-diffusion-reaction equations, nonlinear hyperbolic systems), complex multi-agent systems (kinetic equations, particle methods, multi-scale models), superconductivity and materials science (Ginzburg-Landau equations), evolution of interfaces in physics and biology (minimal surface equations, motion by mean curvature), image processing (total variation-based methods), optimal control (Hamilton-Jacobi equations), mathematical finance (stochastic differential equations, Lévy processes, stochastic control), statistical mechanics (interacting particle systems, stochastic systems with many degrees of freedom), classical and quantum mechanics. This area is characterised by a sophisticated integration of multidisciplinary skills in Analysis of nonlinear PDEs, Calculus of Variations, Optimal Control, Numerical methods for PDEs, Scientific Computing, Stochastic Analysis, Probability Theory, Mathematical Physics, and Differential Geometry. The research is carried out through several collaborations, partnerships, networks, and projects both at national and international levels. This area can be further divided into sub-areas, which are recognisably different but interact with one another. Analysis of PDEs and Calculus of Variations Keyphrases: nonlinear partial differential equations, geometric measure theory, optimal transport, variational models in superconductivity theory and materials science, control theory, mean field games. Numerical Analysis and Scientific Computing Keyphrases: numerical methods for hyperbolic systems, Finite Volume and Discontinuous Galerkin schemes, exponential integrators and matrix function approximation, numerical methods for nonlinear Schrodinger equations, numerical methods for kinetic equations, modelling of multi-agent systems. Probability and Mathematical Physics Keyphrases: complex systems, interacting particle systems, stochastic dynamics, mean field games, stochastic partial differential equations, mathematical finance, neural networks and applications, integrable systems, geometric methods in mechanics.
Giacomo Albi
Associate Professor
Sisto Baldo
Associate Professor
Mauro Bonafini
Temporary Assistant Professor
Marco Caliari
Full Professor
Giacomo Canevari
Associate Professor
Paolo Dai Pra
Full Professor
Luca Di Persio
Associate Professor
Elena Gaburro
Associate Professor
Antonio Marigonda
Full Professor
Giandomenico Orlandi
Full Professor
Nicola Sansonetto
Associate Professor
Research interests
Topic People Description
Calculus of variations and optimal control; optimization standard compliant  MSC
Existence theories Sisto Baldo
Minimal surfaces. Calculus of variations on manifolds.
Hamilton-Jacobi theories, including dynamic programming Antonio Marigonda
Nonsmooth Analysis and application to Optmal control. Viscosity solutions of Hamilton-Jacobi equations.
Optimality conditions. Sisto Baldo
Asymptotics of variational problems. Variational convergences and Gamma Convergence. Singular perturbations of variational problems.
Variational principles of physics. Sisto Baldo
Variational problems from condensed matter and particle Physics (e.g. Ginzburg-Landau models for superconductivity, Gross-Pitaevskii model for Bose-Einstein condensation, string theory) and their relation with minimal surfaces.
Variational problems in a geometric measure-theoretic setting Sisto Baldo
Mauro Bonafini
Giacomo Canevari
Antonio Marigonda
Giandomenico Orlandi
Nicola Sansonetto
Geometric variational and evolution problems: minimal surfaces, motion by mean curvature. Optimal mass transport theory.
Manifolds standard compliant  MSC
Geometric measure and integration theory, integral and normal currents in optimization Giandomenico Orlandi
Geometric measure theory, integral and normal currents; optimization problems for networks of curves and surfaces.
Optimal transportation theory Giandomenico Orlandi
Optimal transportation theory
Optimal Transport Antonio Marigonda
Analytical and geometrical methods for the study of problems of optimal mass transportation and optimal resource allocation.
Numerical analysis standard compliant  MSC
Approximation of matrix exponential Marco Caliari
Polynomial approximation of matrix exponential by interpolation at special nodes.
Numerical approximation Marco Caliari
We implement algorithms to calculate a numerical approximation of a complicated function, defined either directly by an explicit formula or procedure or else, for example, defined indirectly as the solution of a differential equation of some type.
Partial differential equations, initial value and time-dependent initial-boundary value problems Giacomo Albi
Marco Caliari
Elena Gaburro
Solution of non-linear Schrödinger, mean-field and Boltzmann-type equations by pseudo-spectral or meshless methods in space and splitting methods in time.
Ordinary differential equations and applications Giacomo Albi
Development of Implicit-Explicit schemes and asymptotic preserving schemes for time dependent problem. Applications in hyperbolic balance laws with diffusive limit and optimal control problems.
Partial differential equations, initial value and time-dependent initial-boundary value problems standard compliant  MSC
Equazioni alle derivate parziali di tipo ellittico Giacomo Canevari
Studio di esistenza, di regolarità e proprietà qualitative di soluzioni ad equazioni e sistemi elittici del second'ordine, anche attraverso tecniche variazionali.
Stochastic analysis standard compliant  MSC
Stochastic analysis Luca Di Persio
Stochastic analysis, theory of stochastic partial differential equations in finite/infinite dimension, randomly interacting particle systems,with applications to Mathematical Finance.
Large scale interacting random systems Paolo Dai Pra
Sistemi di particelle interagenti, limiti macroscopici, giochi a campo medio. Applicazioni alla biologia e alla scienze sociali.
Gruppi di ricerca
Name Description URL
Analysis of PDE and Calculus of Variations Il gruppo si occupa di attività di ricerca nel campo del calcolo delle variazioni, teoria geometrica della misura, teoria del controllo ottimo, teoria del trasporto ottimo, e applicazioni.
Contemporary Applied Mathematics Sviluppo di metodi matematici teorici e computazionali avanzati per fenomeni di trasporto e diffusione in sistemi complessi, l'approssimazione multivariata e problemi di controllo alto dimensionali.
INdAM - Unità di Ricerca dell'Università di Verona Raccogliamo qui le attività scientifiche dell'Unità di Ricerca dell'Istituto Nazionale di alta Matematica INdAM presso l'Università di Verona
Robotica, Intelligenza Artificiale e Controllo Il gruppo di ricerca si occupa di robotica non convenzionale
Projects
Title Managers Sponsors Starting date Duration (months)
HE ERC - Advanced Structure Preserving Lagrangian schemes for novel first order Hyperbolic Models: towards General Relativistic Astrophysics (ALcHyMia) Elena Gaburro UE - Unione Europea 4/1/24 60
Study of the integration of stochastic analysis tools with Machine Learning models in the training and operation of Large Language Models (LLM). Luca Di Persio HPA s.r.l. 2/7/24 11
Data-driven discovery and control of multi-scale interacting artificial agent systems. Giacomo Albi MUR - Ministero dell'Università e della Ricerca 11/30/23 24
Efficient numerical schemes for control problems in nonlinear PDEs and computational social dynamics Giacomo Albi MUR - Ministero dell'Università e della Ricerca 9/28/23 24
Geometric Evolution of Multi Agent Systems Marco Caliari Ricerca di base finanziata dall'Università degli Studi di Verona 11/1/20 24
Controllability and trajectory generation and nonholonomic mechanics Nicola Sansonetto INdAM 7/26/19 12
Geometric aspects in linear and nonlinear potential theory Virginia Agostiniani INdAM 3/11/19 12
PRIN 2017 - Innovative numerical methods for evolutionary partial differential equations and applications Giacomo Albi MUR - Ministero dell'Università e della Ricerca 1/1/19 36
Geometric Measure Theoretical approaches to Optimal Networks Annalisa Massaccesi INdAM 3/22/18 12
Numerical methods for multiscale control problems and applications Giacomo Albi INdAM 2/5/18 12
CUMIN - Currents and Minimizing Networks Giandomenico Orlandi Unione Europea 9/1/17 24
Metodi di controllo ottimo stocastico per l'analisi di problemi di debt-management Antonio Marigonda 3/15/17 12
Geometric evolution of curves, surfaces and networks Giandomenico Orlandi INdAM 3/14/17 12
Stochastic Partial Differential Equations and Stochastic Optimal Control with Applications to Mathematical Finance Luca Di Persio 3/21/16 12
Metodi di viscosità, geometrici e di controllo per modelli diffusivi nonlineari (PRIN 2009 ESTERNO) Antonio Marigonda Ministero dell'Istruzione dell'Università e della Ricerca 7/18/11 24
Fenomeni di propagazione di fronti e problemi di omogeneizzazione (GNAMPA 2010 ESTERNO) Antonio Marigonda INdAM 3/25/10 12
Trasporto ottimo di massa, disuguaglianze geometriche e funzionali e applicazioni (PRIN 2008 ESTERNO) Giandomenico Orlandi Ministero dell'Istruzione dell'Università e della Ricerca 3/22/10 24
Applicazione della teoria del trasporto ottimo alla modellizzazione delle fibre nervose del cervello - Progetto Ricercatori di Recente Afferenza Antonio Marigonda 2/1/10 12
Metodi di viscosità e metrici per l'omogeneizzazione (GNAMPA 2009 ESTERNO) Antonio Marigonda INdAM 3/1/09 12
Energie di interfaccia e problemi parabolici-iperbolici in ambiente discreto e continuo (GNAMPA 2008 ESTERNO) Giandomenico Orlandi INdAM 2/1/08 12
Metodi variazionali nella teoria del trasporto ottimo di massa e nella teoria geometrica della misura (PRIN 2006 ESTERNO) Giandomenico Orlandi Ministero dell'Istruzione dell'Università e della Ricerca 2/9/07 24
Fenomeni di evoluzione non lineari suggeriti dalla Fisica e dalla Biologia (GNAMPA 2006 ESTERNO) Giandomenico Orlandi INdAM 1/1/06 12
Calcolo delle Variazioni (PRIN 2004 ESTERNO) Giandomenico Orlandi Ministero dell'Istruzione dell'Università e della Ricerca 11/30/04 24
Calcolo delle Variazioni (PRIN 2002 ESTERNO) Giandomenico Orlandi Ministero dell'Istruzione dell'Università e della Ricerca 12/16/02 24

Activities

Research facilities

Share