Artificial Intelligence

Artificial Intelligence (AI) aims to develop algorithms, models, and technologies that enable machines to perform complex tasks, interact with the environment and people, adapt to new situations, and improve over time through experience. This research area integrates deep knowledge that includes formal methods, optimization techniques, modelling, and analysis of multimodal signals. The research is developed through numerous international and national collaborations and focuses on both methodological and applied aspects of AI. In particular, the research primarily concentrates on the following interdisciplinary fields of AI: automated reasoning and intelligent systems, autonomous agents and multi-agent systems, reinforcement learning and planning under uncertainty, explainable and neuro-symbolic planning, machine and deep learning, natural language processing, computer vision, multimodal applications, computational graphics, application of AI for bioinformatics and medical informatics, processing of multidimensional signals, and computational methods for the analysis of social and affective behaviour concerning virtual/augmented/mixed/extended reality and social robotics.
Cigdem Beyan
Associate Professor
Manuele Bicego
Associate Professor
Maria Paola Bonacina
Full Professor
Umberto Castellani
Full Professor
Alberto Castellini
Associate Professor
Ferdinando Cicalese
Full Professor
Matteo Cristani
Associate Professor
Luca Di Persio
Associate Professor
Alessandro Farinelli
Full Professor
Rosalba Giugno
Full Professor
Daniele Meli
Temporary Assistant Professor
Vittorio Murino
Full Professor
Roberto Posenato
Associate Professor
Research interests
Topic People Description
Computer graphics standard compliant  ACM 2012
Shape modeling and anlaysis Umberto Castellani
Shape modelling focuses on the 3D synthesis and simulation of the real world involving geometric, appearance and dynamic aspects (i.e., deforming objects). Shape analysis is based on the processing of 3D structures to infer a higher-level interpretation of the observed data using for examples shape matching or shape segmentation techniques. Recent advances in this field encompass deep learning methods on the 3D domain (i.e., geometric deep learning).
Computer vision standard compliant  ACM 2012
Biometrics Cigdem Beyan
Vittorio Murino
Advancing face, fingerprint, and iris recognition, as well as gait analysis, voice biometrics, and multimodal biometric systems. It also addresses privacy and ethical considerations in biometric applications.
Medical image processing Cigdem Beyan
Vittorio Murino
Developing techniques to process and interpret medical images, including those from modalities like X-rays, CT scans, MRIs, and histopathology slides. Applications include disease diagnosis, tissue segmentation, organ recognition, anomaly detection, and treatment monitoring. By leveraging deep learning and advanced image processing, medical computer vision enhances diagnostic accuracy, supports personalized treatment, and enables real-time insights in healthcare settings.
Activity recognition and understanding Cigdem Beyan
Vittorio Murino
Recognizing and understanding individual and group activities, including gaze tracking, facial expression analysis, and human-object and social interaction analysis, with applications in healthcare, assisted living, and public safety.
Video surveillance and monitoring Cigdem Beyan
Vittorio Murino
Detecting anomalies in surveillance footage, identifying events and generating alerts, tracking objects, and analyzing motion. It has applications in smart cities, transportation, and retail environments.
Distributed artificial intelligence standard compliant  ACM 2012
Intelligent agents Alberto Castellini
Matteo Cristani
Luca Di Persio
Alessandro Farinelli
Daniele Meli
Design and development of autonomous entities that can sense, model and interact with the environment in which they operate. These area focuses on the interaction and integration of solution technques for several research topics such as automated planning and reasoning, reinforcement learning, statistical learning and reasoning in face of uncertainty.
Multi agent systems Alberto Castellini
Matteo Cristani
Luca Di Persio
Alessandro Farinelli
Design and development of multiagent systems, where intelligent agents can interact among them, with the environment and with humans. This area focuses on the interaction and integration of solution techniques related to multiagent planning, statistical learning, multi-agent reinforcement learning and game theory.
Human computer interaction (HCI) standard compliant  ACM 2012
Affective Computing Cigdem Beyan
Vittorio Murino
Focuses on designing systems that can detect, interpret, and respond to human internal states, including emotions, moods, motivations, and cognitive states as well as subtle cues like stress, attention levels, and engagement, using inputs from facial expressions, voice tone, physiological signals, and contextual behavior. The aim of affective computing is to enable technology to interact more naturally and empathetically, adapting responses based on a user’s inner state to improve user experience and engagement.
Social AI (Social signal processing) Cigdem Beyan
Vittorio Murino
Developing AI systems that can perceive, interpret, and respond to human social behaviors and interactions. This field combines knowledge from computer vision, multimedia, psychology, linguistics, and machine learning to enable machines to understand social signals, such as facial expressions, gestures, gaze, voice intonation, and body language. The aim is to create systems capable of engaging in socially aware interactions, recognizing human intentions and social dynamics, and adapting responses accordingly.
Knowledge representation and reasoning standard compliant  ACM 2012
Automated reasoning Maria Paola Bonacina
Matteo Cristani
Decision procedures for satisfiability modulo theories and assignments; Automated theorem proving; Automated model building; Reasoning about programs; Interpolation of proofs for the generation of abstractions or explanations; Strategy analysis; Distributed automated deduction; Rewriting.
Temporal reasoning Roberto Posenato
Temporal constraint networks are a research area within temporal reasoning focused on modeling and solving problems where events, tasks, or resources are constrained by temporal dependencies. Temporal constraint networks are used to tackle complex problems in scheduling, planning, and coordination, especially in dynamic environments where constraints may evolve over time. Recent advancements incorporate game-theoretic models, spatio-temporal constraints, and probabilistic methods to address the challenges posed by time-varying, decentralized, and uncertain systems.
Knowledge representation Matteo Cristani
Reasoning with knowledge; non-monotonic reasoning; reasoning with spatio-temporal constraints; defeasible logic.
Machine learning standard compliant  ACM 2012
Active learning Cigdem Beyan
Manuele Bicego
Ferdinando Cicalese
Rosalba Giugno
In active learning, the model iteratively queries an oracle (typically a human annotator) to label only the most informative data points that would contribute most to improving the model's accuracy. By doing so, active learning reduces the labeling cost and accelerates the model's learning process. This approach is particularly useful when labeled data is scarce or expensive to obtain. The research focuses on developing effective selection criteria to identify the most informative data points for labeling, thereby improving the efficiency of the active learning process.
Domain adaptation/generalization Cigdem Beyan
Vittorio Murino
Refers to techniques in machine learning that aim to improve the performance of models when applied to new, unseen domains or environments. Domain adaptation focuses on transferring knowledge learned from a source domain (with abundant labeled data) to a target domain (with limited or no labeled data), overcoming the distributional differences between the two. On the other hand, domain generalization aims to develop models that can generalize across multiple domains, making them robust to variations without needing to retrain them on each specific domain. These approaches are particularly important in real-world applications, where models must perform reliably across diverse and changing datasets.
Multi-modal Learning Cigdem Beyan
Vittorio Murino
Aims to integrate and analyze data from multiple sources or modalities, such as images, text, audio, and video, to improve the performance and understanding of machine learning models. By combining information from different types of data, multi-modal learning enables systems to better capture the richness and complexity of real-world information. This field includes challenges such as modality translation, alignment, fusion, effective representation, and more. This area also includes multimodal/visual language models such as CLIP, which connects text and images, DALL-E, which generates images from text, BLIP, designed for image captioning and visual question answering, and large language models like GPT-4 and LLaMA, which extend to multimodal functions for tasks like text-to-image generation.
Multi-task learning Cigdem Beyan
Vittorio Murino
A paradigm where a model is trained to solve multiple related tasks simultaneously, sharing knowledge and representations across tasks to improve overall performance. Instead of training separate models for each task, multi-task learning leverages shared features and parameters, allowing the model to learn generalized representations that benefit all tasks involved. Research in this field focuses on improving task prioritization, balancing task importance, designing more efficient architectures, and dealing with negative transfer—where learning one task harms the performance of others. Additionally, the exploration of methods for task weighting, shared and task-specific layers, and transfer learning techniques are actively being investigated to enhance the versatility and scalability of multi-task models.
Unsupervised learning Cigdem Beyan
Manuele Bicego
Alberto Castellini
Ferdinando Cicalese
Alessandro Farinelli
Rosalba Giugno
Vittorio Murino
Is an approach where models are trained on unlabeled data, with the goal of identifying hidden patterns or structures within the data without predefined labels. It is commonly used for tasks like clustering, dimensionality reduction, and anomaly detection. Open research in unsupervised learning focuses on improving the ability to discover meaningful structures in complex, high-dimensional datasets, often with limited prior knowledge. Key challenges include developing more effective clustering algorithms, improving the interpretability of models that uncover latent structures, and handling high levels of noise or sparsity in data. Additionally, there is ongoing work to bridge the gap between unsupervised learning and other paradigms, such as semi-supervised, self-supervised or contrastive learning, and to enhance the robustness of unsupervised models in real-world applications.
Reinforcement learning Alberto Castellini
Alessandro Farinelli
Reinforcement Learning (RL) is a learning paradigm where agents to learn how to take a sequence of decisions through interactions with their environment. RL trains a model by considering a reward signal that is associated with the actions performed in the environment (high reward for good actions and the opposite). The model aims at optimizing the expected accumulated reward over time. RL is very intersting for practical applications (e.g., robotics, recommender systems) because it requires minimal specifications from the user and it can adapt to unpredicatble changes in the enrvironment. Main challenges relates to devising safe policies for the agents, e.g., learning while avoiding catastrophic falures (safe reinforcement learning and offline reinforcement learning), to properly evaluate the quality of a trained system, e.g., how can we guarantee that the agent will behave properly in unseen situations, and to improve sample efficiency, e.g., model-based reinforcement learning.
Semi-supervised learning Cigdem Beyan
Vittorio Murino
Combines a small amount of labeled data with a large amount of unlabeled data during training. The goal is to leverage the abundant unlabeled data to improve the learning process, using the limited labeled data to guide the model’s understanding of the task. This approach is particularly useful in scenarios where labeling data is expensive or time-consuming, but there is a large pool of unlabeled data available.
Supervised learning Cigdem Beyan
Manuele Bicego
Alberto Castellini
Ferdinando Cicalese
Alessandro Farinelli
Rosalba Giugno
Vittorio Murino
Is an approach where models are trained on labeled data to learn a mapping from inputs to outputs, enabling them to predict correct labels for new, unseen data. While widely used for tasks like classification, regression, and time series forecasting, open research in this field addresses several challenges. Key questions include how to make models more robust to label noise and inconsistencies, improve sample efficiency to reduce the need for large labeled datasets, and enable effective transfer learning across different tasks and domains with limited labeled data. Additionally, addressing issues of fairness and bias in supervised models, as well as improving scalability to handle large datasets without compromising performance, and attention/transformer-based approaches remain active areas of exploration.
Deep learning Cigdem Beyan
Alberto Castellini
Alessandro Farinelli
Rosalba Giugno
Vittorio Murino
Focuses on training neural networks with multiple layers to automatically learn patterns and representations from large amounts of data. Using architectures such as convolutional neural networks (CNNs) for images, recurrent neural networks (RNNs) for sequential data, and transformers for diverse tasks, deep learning excels at complex tasks like image recognition, natural language processing, speech recognition, reinforcement learning, time series analysis, and autonomous driving.
Explainable artificial intelligence Alberto Castellini
Alessandro Farinelli
Daniele Meli
The goal of explainable AI (XAI) is to i) explain black-box models; ii) develop AI models which are interpretable by construction. For instance, this involves causal analysis and discovery, logical models of agency (with logic programming) and logical machine learning (with inductive logic programming). XAI helps characterize model accuracy, fairness, transparency and outcomes in AI-powered decision making; moreover this field focuses on methods for improving model and decision interpretation using statistical and graphical tools.
Natural language processing standard compliant  ACM 2012
NLP and LLM Matteo Cristani
Technologies for undestanding and generating texts; specific text processing, in particular legal texts; generation of texts including artificial languages ones.
Planning and scheduling standard compliant  ACM 2012
AI & robotics Alberto Castellini
Alessandro Farinelli
Daniele Meli
Application of AI techniques to increase the autonomy level of robotic systems. This includes the adaptation of algorithms for autonomous planning and reinforcement learning to: i) handle the cyber-physical constraints imposed by robots operating in partially observable and uncertain scenarios; ii) guarantee the reliability and robustness of robotic systems that operate in open environments (e.g., interacting with humans and other robotic systems); iii) facilitate the use of robotic systems in realistic application by proposing novel paradigms of interaction with users (e.g., train a robot to execute a task rather than specify a control program).
Planning under uncertainty Alberto Castellini
Alessandro Farinelli
Planning under uncertainty focuses on sequential decision-making in uncertain environments, namely, situations with imperfect information. (Partially Observable) Markov Decision Processes are used to represent these contexts. The goal of planning under uncertainty is to generate optimal policies for these problems, namely, functions able to suggest optimal actions in situations faced by the agent. The main challenges concern dealing with large problems (scalability), acquiring new knowledge about the environment (adaptability), preventing undesirable behaviors (safety), safe policy improvement (robustness), interacting with humans (human-in-the-loop), supporting human understanding (explainability), bridging planning and reinforcement learning (model-based RL), bridging symbolic and probabilistic/data-driven planning. Among the most recent approaches to tackle these challenges, online methods based on Monte Carlo Tree Search have achieved strong results in the last years in both strategic games (e.g., board games such as Go) and real-world applications (e.g., robotics, cyber-physical systems, and decision support systems).
Multi-agent planning Alberto Castellini
Alessandro Farinelli
Multiagent planning deals with planning approaches applied to multi-agent systems. The main goal of these techniques is to generate solutions for sequential decision making that promote synergy among multiple autonomous agents to achieve collective goals. Among the main topic of this field there are decentralized optimization, multiagent path planning, multiagent learning, cooperation and coordination. Important tools in this fiels are, for instance, coordination graphs that are used in recent cooperative multi-agent planning and reinforcement learning (MARL) algorithms where coordination between agents is essential to accomplish the task. Coordination graphs allow to represent how agents can coordinate using some communication via message passing. Applications of multiagent planning span over a wide set of domains including autonomous driving, logistic (e.g., fleet of autonomous robots), environmental monitoring (fleet of mobile drones for data acquisition).
Neurosymbolic planning Alberto Castellini
Alessandro Farinelli
Daniele Meli
Neurosymbolic AI focuses on combining standard data-driven AI (e.g., reinforcement learning) with symbolic approaches (e.g., logic programming and inductive logic programming), in order to enhance the explainability of AI systems (e.g., autonomous agents), their efficacy in human-robot interaction, and foster incremental knowledge acquisition and generalization in planning.
Gruppi di ricerca
Name Description URL
Algoritmi Il gruppo persegue lo studio degli aspetti strutturali di problemi fondamentali in informatica e dei loro modelli. Lo scopo è porre le basi per la progettazione di algoritmi protocolli e sistemi migliori e comprenderne i limiti computazionali. Aree specifiche di interesse includono: progettazione di algoritimi, strutture dati, algoritmi su stringhe, complessità, ottimizzazione combinatoriale, codici e teoria dell’informazione, machine learning. I problemi investigati hanno forti connessioni con le aree della bioinformatica, delle reti di comunicazione, della ricerca operativa e dell’intelligenza artificiale.
Algoritmi in Bioinformatica e Calcolo Naturale Applicazione di metodi teorici e di analisi dati per modellare l’informazione sottostante ai processi biologici: algoritmi su grafi e stringhe per la biologia dei sistemi; strutture dati avanzate per sequenze di dati; misure di distanza tra sequenze biologiche; calcolo naturale (biotecnologico, e a membrane), riconoscimento di pattern, e apprendimento automatico da dati biomedicali.
ARLette - Laboratorio di Ragionamento Automatico Il gruppo svolge ricerche in Ragionamento Automatico: soddisfacibilità modulo teorie e assegnamenti, procedure di decisione per la soddisfacibilità, dimostrazione di teoremi, costruzione di modelli, riscrittura, e applicazioni.
Basi di dati e Sistemi Informativi Questo gruppo di ricercatori si occupa di varie tematiche nell'ambito dei sistemi informativi http://stars.di.univr.it
INdAM - Unità di Ricerca dell'Università di Verona Raccogliamo qui le attività scientifiche dell'Unità di Ricerca dell'Istituto Nazionale di alta Matematica INdAM presso l'Università di Verona
InfOmics La nostra ricerca mira ad analizzare i dati biomedici in modo efficiente, in particolare sviluppiamo nuovi metodi per estrarre reti biologiche, integrare dati eterogenei, analizzare omici, ricostruire pangenomi, analizzare genomi consapevoli dell'aplotipo e classificare i pazienti. Utilizziamo la teoria derivante dall'apprendimento automatico, dalla scienza dei dati, dalla matematica e dalla teoria dei grafi. https://infomics.github.io/InfOmics/index.html
Intelligenza Artificiale (IA) Il gruppo svolge ricerche in Intelligenza Artificiale: Ragionamento Automatico, Algoritmi di Ricerca, Rappresentazione della Conoscenza, Apprendimento Automatico, Sistemi Multi-Agenti e applicazioni.
ISLa - Intelligent Systems Lab Intelligenza artificiale, statistical learning ed analisi dei dati per sistemi intelligenti https://isla-lab.github.io/
K.Re.Art.I. Rappresentazione della conoscenza tramite tecniche di IJntelligenza Artificiale
Logica Logica in matematica ed informatica. https://www.logicverona.it/
PARCO – Parallel Computing Obiettivo del gruppo di ricerca è lo sviluppo e ottimizzazione di Software per sistemi di calcolo multi-core CPU/many-core GPU con vincoli di risorse (e.g., Edge Computing) e per sistemi di calcolo ad alte prestazioni (High-performance Computing – HPC).
Robotica, Intelligenza Artificiale e Controllo Il gruppo di ricerca si occupa di robotica non convenzionale
Visione, Immagini, Pattern e Segnali (VIPS) Le attività del gruppo VIPS sono rivolte all’analisi, al riconoscimento, alla modellazione e alla predizione di pattern e segnali multidimensionali e multimediali mediante metodi di intelligenza artificiale e apprendimento automatico. Le competenze specifiche e i domini applicativi riguardano: elaborazione delle immagini, visione artificiale, riconoscimento di pattern, interazione uomo-macchina, grafica al calcolatore e modellazione digitale, realtà virtuale e mista, gaming e all’analisi e modellazione di dati in ambito biomedicale e delle neuroscienze a fini di ricerca di base e traslazionale. http://vips.sci.univr.it/
Projects
Title Managers Sponsors Starting date Duration (months)
INDICE- Innovazioni Digitali per le Imprese Culturali e Creative Alberto Belussi Regione del Veneto 2/14/25 24
Multimodal Elder Care - MEC Vittorio Murino EVS EMBEDDED VISION SYSTEMS srl 6/6/24 16
TRANSFER AND ADAPTIVE LEARNING IN IMPERFECT MULTIMODAL DATA SCENARIOS - TALIM Vittorio Murino MUR - Ministero dell'Università e della Ricerca 5/1/24 18
Sviluppo di una piattaforma basata su Moodle per la gestione del Progetto PreDiSa, per la prevenzione dei disturbi dell’apprendimento Matteo Cristani Rotary Club Verona Scaligero 4/20/24 12
Algoritmo di ottimizzazione dei riposi per autisti professionali Ferdinando Cicalese INFOGESTWEB Srl 2/22/24 2
VVV - Voglio Vedere Verde: virtual simulation of natural ecosystems to express, share and communicate the need for greenery in the environment Davide Quaglia Fondazione Cariverona 12/28/23 24
Comparative analysis of solutions based on evolutionary algorithms for generalized and multi-objective VRP Alessandro Farinelli HPA s.r.l. 12/21/23 5
Studio di tecniche di apprendimento profondo per la segmentazione semantica di immagini Vittorio Murino EVS EMBEDDED VISION SYSTEMS srl 12/7/23 12
Sistemi di classificazione di testi brevi con LLM Matteo Cristani Creactives S.p.A. 11/23/23 12
Deep matching for structure from motion (DEMO)” Umberto Castellani 3DFLOW SRL 11/15/23 14
Green Inspired Revolution for Optimal-Workforce Management - GIRO-WM Luca Di Persio Fondazione Cassa di Risparmio di Trento e Rovereto 11/1/23 24
PRIN 2022 - Urban Greening for Pervasive and Resilient Proximity Davide Quaglia MUR - Ministero dell'Università e della Ricerca 10/18/23 24
Automatic Reconstruction and Interactive simulation of non-rigid shape for computer-aided cloth design (I-CLOTH). Umberto Castellani MUR - Ministero dell'Università e della Ricerca 9/28/23 24
Smart Legal Order in DigiTal Society - SLOTS Matteo Cristani MUR - Ministero dell'Università e della Ricerca 9/28/23 24
Tecnologie di Intelligenza Artificiale per il Monitoraggio del Comportamento di Pazienti Allettati - TIAMoPA Vittorio Murino EVS EMBEDDED VISION SYSTEMS srl 8/31/23 12
Threat data analysis Roberto Giacobazzi Università degli Studi della Calabria - Dipartimento DIMES 6/6/23 4
Model based visual inspection Umberto Castellani Aiviz s.r.l. 3/2/23 7
Development of Artificial Intelligence methods to support insurance policy sales. Alessandro Farinelli REVO Insurance S.p.A. 11/21/22 12
Development of an efficient and robust motion planning solution for hyper-redundant robotic manipulators Alessandro Farinelli Hibot 10/1/22 12
Vision /AI systems to support manual operations on a laser cutting machine Andrea Giachetti PRIMA INDUSTRIE S.p.A 9/30/21 12
Study and development of unsupervised and self-supervised, multimodal training methods, and domain adaptation and distillation, for the analysis of human behavior in automotive applications Vittorio Murino eVS Embedded Vision Systems S.r.l. 9/14/21 24
Percorsi digitali veronesi Umberto Castellani, Alberto Belussi, Isabella Mastroeni, Dino Zardi COMUNE VERONA 4/1/21 14
Sviluppo di un'innovativa piattaforma digitale per lo sviluppo di nuovi servizi Matteo Cristani Dacos s.r.l. 2/15/21 3
Previsioni di vendita promozionale. Predizione ordinanti e correzione predizione Matteo Cristani Veronesi Holding s.p.a. 1/13/21 6
Observation of business processes, with objective guarantees of privacy protection, for the prevention of errors and risk situations in an automatic manner at the time of Industry 4.0 (OPERA 4.0) Davide Quaglia Fondazione Cariverona 1/1/21 24
Studio e sperimentazione di tecniche per l’adattamento a nuovi domini di sistemi di riconoscimento automatico. Marco Cristani eVS Embedded Vision Systems S.r.l. 10/26/20 3
Studio e sviluppo di metodi multi-camera di rilevamento ostacoli per la guida assistita di veicoli in ambienti industriali Vittorio Murino eVS Embedded Vision Systems S.r.l. 10/26/20 7
Sviluppo di un sistema basato su ontologie per la gestione su web di opportunità di finanza agevolata (FINAG) Matteo Cristani INDIGO SRL 10/26/20 14
Supporto scientifico per sviluppo algoritmi di A.I. Andrea Giachetti TR2 Srls 10/15/20 1
Intelligent Heating Control based on Reinforcement Learning Techniques Alessandro Farinelli Giordano controls s.p.a. 10/1/20 12
SAFE PLACE Sistemi IoT per ambienti di vita salubri e sicuri Marco Cristani Regione Veneto 9/10/20 28
Studio e sviluppo di metodi per l’adattamento di sistemi di riconoscimento a nuovi contesti operativi Marco Cristani eVS Embedded Vision Systems S.r.l. 4/14/20 15
EDIPO: A computational solution for bringing neuroimaging genetic into translational research Gloria Menegaz Fondazione Cariverona 4/1/20 36
Creazione di un dataset per la stima della posa 3D di oggetti a partire da immagini 2D Marco Cristani Humatics s.r.l. 3/9/20 9
Automazione di misure antropometriche da scansioni digitali 3D di corpi umani - fase 3 Umberto Castellani Igoodi s.r.l. 2/18/20 5
Support for data acquisition, management and analysis in the context of "smart-land" applications Alessandro Farinelli Smartea s.r.l. 1/27/20 12
Sales Prediction - sistema di predizione delle vendite per le campagne promozionali di alcune famiglie di prodotti su canali distributivi propri clienti Matteo Cristani Veronesi Holding s.p.a. 1/20/20 4
Study and development of machine learning techniques for data prediction. Alessandro Farinelli, Luca Di Persio Terranova s.r.l. 10/22/19 12
Sky System Umberto Castellani Milestone S.r.l. 10/15/19 12
Studio di tecniche di domain adaptation e loro applicazioni Marco Cristani eVS Embedded Vision Systems S.r.l. 10/15/19 7
User profiling from heterogeneous big data by machine learning for Fair digital innovation Gloria Menegaz Joint Projects - assegnato e gestito dal Dipartimento 9/1/19 24
I-MALL - improving the customer experience in stores by intelligent computer vision Marco Cristani MUR - Ministero dell'Università e della Ricerca 8/29/19 36
Automazione di misure antropometriche da scansioni digitali 3D di corpi umani - fase 2 Umberto Castellani Igoodi s.r.l. 8/1/19 6
Brain connectivity underlying physiological and pathological patterns in action tremor Gloria Menegaz 8/1/19 12
Stato dell’arte sulla detection ed il clustering di volti, basato su analisi video Marco Cristani Humatics s.r.l. 6/14/19 6
Studio di tecniche innovative di ricostruzione 3D da immagini in ambito beni culturali Andrea Giachetti 3DFLOW SRL 6/14/19 15
Analysis and development of gestural interaction methods for Augmented Reality applications Andrea Giachetti The Edge Company s.r.l. 4/16/19 12
SIDI - Sistemi innovativi documentali per l’industria Matteo Cristani IUNGO s.p.a. 4/1/19 26
Sviluppo di un sistema di stima della posa basato su corrispondenze fra immagini 2D e modelli 3D, per l’inizializzazione e il tracking di oggetti Marco Cristani Humatics s.r.l. 2/27/19 12
Generazione procedurale di ambienti di guida Umberto Castellani AnteMotion s.r.l. 2/1/19 24
Raccolta e integrazione di fonti eterogenee di dati e progettazione di una piat-taforma per la profilazione di eventi fieristici Gloria Menegaz 8/20/18 12
Computer Engineering for Industry 4.0 Franco Fummi, Alessandro Farinelli MIUR 1/1/18 60
Analysis and design of similarity measures between materials based on textures and color Marco Cristani eVS embedded Vision Systems s.r.l. 5/2/17 5
Studio e sviluppo di metodi di visione artificiale applicati al processo di lavorazione del marmo Marco Cristani DONATONI MACCHINE s.r.l. 4/3/17 12
BeBoW - Beyond the Bag of Words paradigm: a structural and statistical perspective Manuele Bicego Ricerca di Base - assegnato e gestito dal Dipartimento 3/1/17 24
Piano formativo "Hospitality 4.0" Cod. AVI/007/16 id. 174808 Fondimpresa Avviso n. 272016 Macroarea A Matteo Cristani Villa Quaranta Park s.r.l. 2/17/17 6
DSURF Andrea Giachetti 2/5/17 36
Algorithms for quality control on an industrial production line Umberto Castellani eVS embedded Vision Systems s.r.l. 12/1/16 7
Mapping functional connectivity patterns in neurological and neurosurgical dis-eases with Arterial Spin Labeling and Blood Oxygenation Level Dependent MRI (VBRF) Gloria Menegaz 8/1/16 12
Allineamento automatico e gestione nuvole di punti provenienti da diversi tipi di sensori Umberto Castellani 3DFLOW SRL 7/29/16 5
Semantica documentale avanzata (ADOSEM) Matteo Cristani, Marco Cristani SMARTEN s.r.l. 7/15/16 12
Studio e sviluppo di algoritmi per il controllo qualità su linea di produzione industriale Umberto Castellani eVS embedded Vision Systems s.r.l. 7/7/16 12
Brain microstructural modeling for improved TMS anchoring - Joint Projects 2015 Gloria Menegaz EB Neuro SpA 7/1/16 24
Studio, implementazione e validazione di interfacce per sistemi robotici (FSE) Gloria Menegaz 7/1/16 12
INTCATCH- Development and application of Novel, Integrated Tools for monitoring and managing Catchments Alessandro Farinelli Unione Europea 6/1/16 44
Ricostruzione tridimensionale a partire da immagini in ambiente controllato Umberto Castellani 3DFLOW SRL 3/8/16 10
Studio e sviluppo di algoritmi per la ricostruzione geometrica di oggetti da una coppia stereo di telecamere a scansione lineare Umberto Castellani eVS embedded Vision Systems s.r.l. 1/19/16 6
OSWINE - Online Supervision for Wine Cellar Production Unities. Supervisione Online (via web) per Unità di Produzione del Vino (Cantine) Matteo Cristani SORDATO s.r.l. 1/8/16 12
Studio, sviluppo ed implementazione embedded di algoritmi di classificazione e tracking di pedoni e di cellule ematiche Marco Cristani eVS embedded Vision Systems s.r.l. 10/27/15 12
SCENEUNDERLIGHT - Time-lapse understanding of the static and human scene and its lighting Marco Cristani Unione Europea 10/1/15 48
Computer Vision e Pattern Recognition per l'analisi automatica di video durante sessioni di gioco del tennis Andrea Giachetti GREENSOFT SAS 7/16/15 6
Studio e sviluppo di algoritmi per il tracking di persone in tempo reale Marco Cristani eVS embedded Vision Systems s.r.l. 4/27/15 12
Studio e sviluppo di un sistema di visione per il controllo processo di macchine industriali Marco Cristani eVS embedded Vision Systems s.r.l. 2/25/15 5
Lo sviluppo delle imprese IT per competere nel mercato 3.0 Matteo Cristani AIV Formazione 8/1/14 9
Consulenza e supporto allo sviluppo di un algoritmo di ricostruzione geometrica di tipo globale e implementazione interfaccia utente di tipo SaaS Umberto Castellani 3DFLOW SRL 7/21/14 10
Adozione di una soluzione tecnologica brevettata per lo sviluppo di un nuovo prodotto Matteo Cristani Fiore Industrial s.r.l. 7/9/14 8
Controllo dei costi attraverso metodologie di Lean Accounting Matteo Cristani QUIKO ITALY s.a.s. 7/9/14 8
Implementazione di metodologie e tecniche di lean production per un'azienda più competitiva Matteo Cristani Rossi Siderurgica S.p.A. 7/9/14 10
Ottimizzare per crescere: lo sviluppo partendo dall'efficienza attraverso l'approccio lean Matteo Cristani IKEM s.r.l. 7/9/14 10
Ottimizzazione dei processi di logistica di magazzino con integrazione di software per la gestione ordinativi Matteo Cristani Vicenzasped International Agency s.r.l. 7/9/14 8
Sviluppare strategie di marketing per la penetrazione commerciale del prodotto Matteo Cristani ATIG Service srl 7/9/14 10
Sviluppo delle competenze per l'ottimizzazione dei processi aziendali in ottica lean Matteo Cristani North Mecc srl 7/9/14 10
Utilizzo di modelli di costing & pricing per il miglioramento delle performance economiche dell'impresa Matteo Cristani EURONDA S.p.A. 7/9/14 10
Interventi di supervisione tecnica nell'ambito del progetto didattico denominato "Le avventure di Supertab" Matteo Cristani CSE ITALIA s.r.l. 7/4/14 2
Interventi di innovazione organizzativa Matteo Cristani Officine Dal Zotto s.r.l. 6/11/14 3
Strumenti innovativi per strategie di marketing ed il miglioramento della comunicazione Matteo Cristani Wecandem s.r.l. 6/11/14 8
EXternal-InTernal Vision Based Driving Assistance System Marco Cristani eVS embedded Vision Systems s.r.l. 1/1/14 24
Sviluppo di un algoritmo per il riconoscimento e il tracking di veicoli in FPGA Marco Cristani eVS embedded Vision Systems s.r.l. 1/1/14 12
E-commerce per progettare lo sviluppo agroalimentare Matteo Cristani AIV Formazione 12/3/13 11
Metodi Automatici per la Video Analisi del Traffico Leucocitario Marco Cristani eVS embedded Vision Systems s.r.l. 11/11/13 16
Automatic Human behavior Analysis in neurological Diseases: the case of epilepsy Gloria Menegaz Joint Projects - assegnato e gestito dal Dipartimento 9/18/13 24
Algoritmo di analisi di presenza di eventi di interesse per la folla Marco Cristani IIT Istituto Italiano di Tecnologia 4/4/13 7
Algoritmo di analisi di raggruppamenti di persone all'interno di una folla Marco Cristani IIT Istituto Italiano di Tecnologia 4/4/13 7
Theorem proving algorithms for program analysis: interpolants, models, and termination (PRIN 2012 non finanziato) Maria Paola Bonacina 2/18/13 36
RODAOS - The retrieval of documents and objects in a single net Matteo Cristani REAL T s.r.l. 12/19/12 12
Sviluppo di algoritmi di immagini su FPGA Marco Cristani eVS embedded Vision Systems s.r.l. 10/15/12 12
Analysis, verification and synthesis of hw/sw systems through synergies of abstract interpretation and automated reasoning Maria Paola Bonacina 6/1/12 36
Ricostruzione tridimensionale dalle immagini, visualizzazione e localizzazione nell'ambito del progetto VISIT (PRIN 2009) Andrea Fusiello PRIN VALUTATO POSITIVAMENTE 11/15/11 24
SANDMED: Shape ANalysis for the Diagnosis of METabolic Disorders Andrea Giachetti 7PQ VALUTATI POSITIVAMENTE 4/17/10 36
Rich-model toolkit: an infrastructure for reliable computer systems Maria Paola Bonacina Unione Europea 10/30/09 48
DASAST - Documental Archives Systems Augmented by Semantic Tagging Matteo Cristani REAL T s.r.l. 9/26/09 12
The web of taxes: un sistema per il retrieval, la classificazione e l'inserimento in basi di dati di aliquote e detrazioni fiscali nell'ambito delle imposte locali Matteo Cristani Caaf Cisl s.r.l. 9/11/09 12
Integrating automated reasoning in model checking: towards push-button formal verification of large-scale and infinite-state systems - Design and integration of proof engines for program analysis Maria Paola Bonacina Ministero dell'Istruzione dell'Università e della Ricerca 9/22/08 24
ODIRD Upper-level Ontology-driven Interpretation of Raw Data Matteo Cristani SIA s.r.l. 5/22/07 12
Metodologie e tecnologie per il GeoMArketing con Sistemi Informativi Territoriali in ambito Postale Matteo Cristani ADDRESS SOFTWARE S.R.L. 5/2/07 12
INtelligent Vision system for Industrial Automation (INVIA) - Joint Project 2005 Vittorio Murino Ateneo, Automazioni Industriali s.r.l. 3/13/07 30
Automated reasoning methods for hardware and software analysis: design, integration and application Maria Paola Bonacina PRIN VALUTATO POSITIVAMENTE 2/9/07 24
Segmentazione e definizione di descrittori efficienti di oggetti tridimensionali. 3-SHIRT (PRIN 2006) Andrea Fusiello Ministero dell'Istruzione dell'Università e della Ricerca 2/9/07 24
3D Anatomical Human 3D Anatomical Functional Models for the Human Musculoskeletal System (Marie Curie ESTERNO) Andrea Giachetti Unione Europea 10/1/06 48
Metodi computazionali per l'acquisizione della forma e del moto del corpo umano mediante tecniche attiche attive e passive (PRIN 2005) Andrea Fusiello PRIN VALUTATO POSITIVAMENTE 1/30/06 24
SORIDO (Sistemi Ontologici per la Riduzione dei costi e l'item deproliferation managment) I Matteo Cristani Creactive Consulting s.r.l. 4/21/05 12
Canone Ontologico. Un approccio integrativo alla organizzazione della conoscenza (PRIN 2004 ESTERNO) Matteo Cristani Ministero dell'Istruzione dell'Università e della Ricerca 11/30/04 24
Tecniche di analisi e sintesi multimodale per la realtà aumentata e l'interazione uomo–macchina Vittorio Murino Fondo EX 60% (2004) Tecniche di analisi e sintesi multimodale per la realtà aumentata e l'interazione uomo–macchina. (continuazione, anno 2004) - assegnato e gestito dal Dipartimento 7/1/04 12
Progettazione di un sistema informativo basato su ontologie in grado di supportare le dinamiche di condivisione di conoscenza tra diverse unità organizzative Matteo Cristani Dipartimento di Informatica e Telecomunicazioni - Università degli Studi di Trento 5/13/04 1
Tecniche di decisione automatica con criteri multipli e Valutazioni Arbitrarie 2 Matteo Cristani ACP s.r.l. 4/16/04 12
Ontologia degli artefatti e dei servizi alle imprese II Matteo Cristani Creactive Consulting s.r.l. 1/29/04 12
Synthesis of deduction-based decision procedures with applications to the automatic formal analysis of software -- Synthesis of satisfiability procedures from theorem-proving strategies Maria Paola Bonacina Ministero dell'Istruzione dell'Università e della Ricerca 11/21/03 24
DAVA - Tecniche di Decisione Automatica con criteri multipli e Valutazioni Arbitrarie Matteo Cristani ACP s.r.l. 3/6/03 12
Ontologia degli artefatti e dei servizi alle imprese I Matteo Cristani Expense Reduction Analysts ngc s.r.l. 2/27/03 12

Activities

Research facilities

Share