Leonard Peter Bos

Foto,  January 27, 2015
Position
Full Professor
Academic sector
MAT/08 - NUMERICAL ANALYSIS
Office
Ca' Vignal 2,  Floor 2,  Room 8
Telephone
+39 045 802 7987
Fax
+39 045 802 7068
E-mail
leonardpeter|bos*univr|it <== Replace | with . and * with @ to have the right email address.

Office Hours

Monday, Hours 3:30 PM - 5:30 PM,   Ca' Vignal 2, floor 2, room 1

Curriculum

Len Bos si occupa di:
  • punti (quasi) ottimali per l'interpolazione polinomiale nel caso di più di una variabile
  • inugualianze di tipo Bernstein/Markov per polinomi di più di una variabile
  • la teoria di pluripotenziale e le sue applicazioni
Le sue pubblicazioni si collocano prevalentemente sulle riviste internazionali dell'area dell'analisi numerica, ma non solo.

Modules

Modules running in the period selected: 32.
Click on the module to see the timetable and course details.

Course Name Total credits Online Teacher credits Modules offered by this teacher
Master's degree in Mathematics Advanced numerical analysis (2017/2018)   6   
Bachelor's degree in Applied Mathematics Numerical analysis II with laboratory (2017/2018)   6   
Bachelor's degree in Applied Mathematics Numerical analysis I with laboratory (2017/2018)   6   
Master's degree in Mathematics Numerical methods for mathematical finance (seminar course) (2017/2018)   6   
Master's degree in Mathematics Advanced numerical analysis (2016/2017)   6   
Bachelor's degree in Applied Mathematics Numerical analysis with laboratory (2016/2017)   12    (Teoria)
Master's degree in Mathematics Numerical methods for mathematical finance (seminar course) (2016/2017)   6  eLearning
Master's degree in Mathematics Advanced numerical analysis (2015/2016)   6   
Bachelor's degree in Applied Mathematics Numerical analysis with laboratory (2015/2016)   12    (teoria)
Master's degree in Mathematics Numerical methods for mathematical finance (seminar course) (2015/2016)   6  eLearning
Master's degree in Mathematics Scientific computing (seminar course) (2015/2016)   6   
Master's degree in Mathematics Advanced numerical analysis (2014/2015)   6   
Master's degree in Mathematics Mathematical finance (2014/2015)   6    (Teoria 2)
Bachelor's degree in Applied Mathematics Numerical analysis with laboratory (2014/2015)   12    (Teoria)
Master's degree in Mathematics Numerical methods for mathematical finance (seminar course) (2014/2015)   6   
Master's degree in Mathematics Advanced numerical analysis (2013/2014)   12    (Teoria)
Master's degree in Mathematics Mathematical finance (2013/2014)   6    (Teoria 2)
Bachelor's degree in Applied Mathematics Numerical analysis with laboratory (2013/2014)   12    (Teoria)
Master's degree in Mathematics Numerical methods for mathematical finance (seminar course) (2013/2014)   6   
Master's degree in Mathematics Scientific computing (seminar course) (2013/2014)   6   
Master's degree in Mathematics Advanced numerical analysis (2012/2013)   12    (Teoria)
Master's degree in Mathematics Approximation of scattered data (seminar course) (2012/2013)   6   
Bachelor's degree in Computer Science Numerical Analysis (2012/2013)   6    (Teoria)
Bachelor's degree in Applied Mathematics Numerical analysis with laboratory (2012/2013)   12    (Teoria)
Master's degree in Mathematics Advanced numerical analysis (2011/2012)   12    (Teoria)
Bachelor's degree in Applied Mathematics Numerical analysis with laboratory (2011/2012)   12    (Teoria)
Master's degree in Mathematics L'approssimazione di dati sparsi (2011/2012)   6   
Master's degree in Mathematics Advanced numerical analysis (2010/2011)   12    (Teoria)
Bachelor's degree in Applied Mathematics Numerical analysis with laboratory (2010/2011)   12    (Teoria)
Master's degree in Mathematics Metodi numerici avanzati per le equazioni differenziali (2010/2011)   6   
Bachelor's degree in Applied Mathematics Numerical analysis with laboratory (2009/2010)   12  eLearning (Teoria)
Bachelor's degree in Computer Science Probability and Statistics (2009/2010)   6    (Teoria)

 
Skills
Topic Description Research area
Numerical approximation We implement algorithms to calculate a numerical approximation of a complicated function, defined either directly by an explicit formula or procedure or else, for example, defined indirectly as the solution of a differential equation of some type. Matematica - applicazioni e modelli
Numerical analysis - -
Inequalities We study polynomial inequalities of Markov/Bernstein type for the derivatives of multivariate polynomials. Matematica - applicazioni e modelli
Real functions - Inequalities For maximal function inequalities
Multivariate Polynomial Interpolation We study optimal points and their asymptotic distribution for polynomial interpolation on a compact set in R^n Matematica - applicazioni e modelli
Approximations and expansions - -
Pluripotential theory A function defined on C^n is said to be plurisubharmonic if restricted to every complex line it is a subharmonic function of one variable. Pluripodtential Theory is the study of such functions and is, in particular, the correct theory for the study of multivariate polynomials. Matematica - applicazioni e modelli
Several complex variables and analytic spaces - Pluripotential theory
Projects
Title Starting date
Approssimazione multivariata con basi polinomiali e radiali 2/29/12
Interpolazione multivariata con polinomi, RBF e altre basi e applicazioni (PRIN 2009) 7/15/11
Near Optimal Points for Multivariate Interpolation 1/1/10