Peter Michael Schuster

Foto,  January 26, 2015
Position
Associate Professor
Academic sector
MAT/01 - MATHEMATICAL LOGIC
Office
Ca' Vignal 2,  Floor 2,  Room 12
Telephone
+39 045 802 7029
Fax
+39 045 8027068
E-mail
peter|schuster*univr|it <== Replace | with . and * with @ to have the right email address.

Office Hours

Wednesday, Hours 2:30 PM - 4:30 PM,   Ca' Vignal 2, floor 2, room 12
Il ricevimento non si terrà nei seguenti giorni: 4-11 ottobre e 8 novembre 2017. Gli studenti interessati da queste modifiche chiedano appuntamento tramite mail.
No office hours will be held the following days: 4th and 11th October and 8th November 2017. Students affected by these changes may ask for appointment by email.

Curriculum

La ricerca di Schuster riguarda la teoria della dimostrazione e la matematica costruttiva. Negli ultimi anni si è occupato principalmente della realizzazione parziale del programma di Hilbert nella matematica astratta, specie del contenuto computazionale delle dimostrazione classiche con il lemma di Zorn. Schuster ha pubblicato in riviste scientifiche di logica, algebra, matematica pura ed informatica teorica, fra cui Annals of Pure and Applied Logic, Journal of Symbolic Logic, Bulletin of Symbolic Logic, Journal of Pure and Applied Algebra, Mathematische Zeitschrift e Logic Journal of the IGPL. È uno degli organizzatori del 2018 Hausdorff Trimester Program “Types, Sets and Constructions”, Hausdorff Institute for Mathematics, Bonn. Ha partecipato anche come coordinatore in vari progetti di ricerca europei (FP7) ed internazionali.

 

Modules

Modules running in the period selected: 15.
Click on the module to see the timetable and course details.

 

Research groups

Logica
Logica in matematica ed informatica.
Skills
Topic Description Research area
Hilbert's Programme for Abstract Mathematics Extracting the computational content of classical proofs in conceptual mathematics. Particular attention is paid to invocations of logical completeness in mathematical form, typically as variants of Zorn's Lemma. Matematica discreta e computazionale
Mathematical logic and foundations - -
Proof theory and constructive mathematics Proof theory at large studies mathematical proofs, which thus become themselves objects of mathematics. In a nutshell, the goal is to understand "what can be proved with what" and to gain computational information from proofs. Constructive mathematics aims at direct proofs from which one can read off algorithms; any such algorithm comes with a certificate of correctness for free, which just is the original proof. Matematica discreta e computazionale
Mathematical logic and foundations - -