Sisto Baldo

Sisto,  October 5, 2008
Position
Associate Professor

Academic sector
MATH-03/A - Mathematical Analysis

Research sector (ERC-2024)
PE1_8 - Analysis


Research sector (ERC)
PE1_8 - Analysis


Office
Ca' Vignal 2,  Floor 2,  Room 8B

Telephone
+39 045 802 7935

E-mail
sisto|baldo*univr|it <== Replace | with . and * with @ to have the right email address.

Personal web page
http://profs.sci.univr.it/~baldo

Office Hours

Monday, Hours 12:30 PM - 1:30 PM,  
Friday, Hours 1:30 PM - 2:30 PM,  

Curriculum

Sisto Baldo si occupa di Analisi Matematica.
I suoi interessi di ricerca vertono principalmente su Calcolo delle Variazioni, Teoria Geometrica della Misura, Equazioni alle Derivate Parziali e Problemi Variazionali Geometrici.
Si occupa anche di didattica della matematica, di formazione insegnanti  e di comunicazione informale della matematica per un pubblico generale.

Modules

Modules running in the period selected: 2.
Click on the module to see the timetable and course details.

Course Name Total credits Online Teacher credits Modules offered by this teacher
Master's degree in Mathematics Functional analysis (2024/2025)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 1 (2024/2025)   12  eLearning

Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:

  • Eventi di Terza Missione: eventi di Public Engagement e Formazione Continua.
  • Insegnamenti di Terza Missione: insegnamenti che fanno parte di Corsi di Studio come Corsi di formazione continua, Corsi di perfezionamento e aggiornamento professionale, Corsi di perfezionamento, Master e Scuole di specializzazione.

Research groups

Analysis of PDE and Calculus of Variations
The research topics of this group cover calculus of variations, geometric measure theory, optimal control theory, optimal transport theory and applications.
Research interests
Topic Description Research area
Partial differential equations of elliptic type Studying existence, regularity, and qualitative properties of solutions to second-order elliptic equations and systems of equations, possibly by variational techniques Mathematical methods and models
Elliptic equations and elliptic systems
Existence theories Minimal surfaces. Calculus of variations on manifolds. Mathematical methods and models
Calculus of variations and optimal control; optimization
Optimality conditions. Asymptotics of variational problems. Variational convergences and Gamma Convergence. Singular perturbations of variational problems. Mathematical methods and models
Calculus of variations and optimal control; optimization
Variational problems in a geometric measure-theoretic setting Geometric variational and evolution problems: minimal surfaces, motion by mean curvature. Optimal mass transport theory. Mathematical methods and models
Calculus of variations and optimal control; optimization
Variational principles of physics. Variational problems from condensed matter and particle Physics (e.g. Ginzburg-Landau models for superconductivity, Gross-Pitaevskii model for Bose-Einstein condensation, string theory) and their relation with minimal surfaces. Mathematical methods and models
Calculus of variations and optimal control; optimization




Organization

Department facilities

Share