Sisto Baldo si occupa di Analisi Matematica.
I suoi interessi di ricerca vertono principalmente su Calcolo delle Variazioni, Teoria Geometrica della Misura, Equazioni alle Derivate Parziali e Problemi Variazionali Geometrici.
Si occupa anche di didattica della matematica, di formazione insegnanti e di comunicazione informale della matematica per un pubblico generale.
Modules running in the period selected: 57.
Click on the module to see the timetable and course details.
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
MyUnivrDi seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:
Topic | Description | Research area |
---|---|---|
Equazioni alle derivate parziali di tipo ellittico | Studio di esistenza, di regolarità e proprietà qualitative di soluzioni ad equazioni e sistemi elittici del second'ordine, anche attraverso tecniche variazionali. |
Mathematical methods and models
Partial differential equations, initial value and time-dependent initial-boundary value problems |
Existence theories | Minimal surfaces. Calculus of variations on manifolds. |
Mathematical methods and models
Calculus of variations and optimal control; optimization |
Optimality conditions. | Asymptotics of variational problems. Variational convergences and Gamma Convergence. Singular perturbations of variational problems. |
Mathematical methods and models
Calculus of variations and optimal control; optimization |
Variational principles of physics. | Variational problems from condensed matter and particle Physics (e.g. Ginzburg-Landau models for superconductivity, Gross-Pitaevskii model for Bose-Einstein condensation, string theory) and their relation with minimal surfaces. |
Mathematical methods and models
Calculus of variations and optimal control; optimization |
Variational problems in a geometric measure-theoretic setting | Geometric variational and evolution problems: minimal surfaces, motion by mean curvature. Optimal mass transport theory. |
Mathematical methods and models
Calculus of variations and optimal control; optimization |
Office | Collegial Body |
---|---|
member | Collegio didattico di Matematica e Data Science - Department Computer Science |
member | Computer Science Department Council - Department Computer Science |
******** CSS e script comuni siti DOL - frase 9957 ********p>