Giandomenico Orlandi

Etna, cratere SE,  December 13, 1999
Position
Full Professor
Academic sector
MATH-03/A - Mathematical Analysis
Research sector (ERC-2024)
PE1_8 - Analysis

PE1_12 - Mathematical physics

PE1_11 - Theoretical aspects of partial differential equations

Research sector (ERC)
PE1_8 - Analysis

PE1_12 - Mathematical physics

PE1_11 - Theoretical aspects of partial differential equations

Office
Ca' Vignal 2,  Floor 2,  Room 02
Telephone
+39 045 802 7986
E-mail
giandomenico.orlandi at univr.it

Office Hours

Riceve tutti i giorni previo appuntamento da fissare via e-mail.

Curriculum

L'attività di ricerca di Giandomenico Orlandi si svolge nell'ambito delle Equazioni Differenziali alle Derivate Parziali, il Calcolo delle Variazioni e la Teoria Geometrica della Misura, attraverso il coordinamento e la partecipazione a progetti europei, binazionali e nazionali,  l'organizzazione di convegni internazionali, relazioni su invito a svariati congressi internazionali e la pubblicazione di numerosi articoli scientifici sulle migliori riviste internazionali.

Attività gestionale ed istituzionale: progettazione Master Degree internazionale in Mathematics presso l'Università di Verona sulla base delle migliori esperienze internazionali, con ottenimento, nel 2017, del certificato di qualità ECMI Teaching Center per il curriculum di Matematica Applicata e Industriale. Membro dell'Educational Committee dell'ECMI (European Consortium for Mathematics in Industry). referente di Dipartimento per lo Sportello Matematico per l'Industria Italiana. Organizzazione di Modelling Week (gruppi di studio con realtà produttive per la risoluzione di problemi industriali). Promozione di convenzioni accademia-industria per attività di terza missione. Membro del collegio docenti  del dottorato interateneo in Matematica Trento-Verona con responsabilità per l'offerta formativa ed i rapporti internazionali. Coordinamento di numerosi partenariati internazionali Erasmus+. Coordinamento programma di dopptio titolo con il MSc in Applied and Industrial Mathematics - INP-UGA Institut Polytechnique Grenoble - Université Grenoble Alpes
 

Modules

Modules running in the period selected: 88.
Click on the module to see the timetable and course details.

Course Name Total credits Online Teacher credits Modules offered by this teacher
Master's degree in Mathematics Functional analysis (2024/2025)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2024/2025)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2024/2025)   6  eLearning
Master's degree in Mathematics Mathematical Modelling in the Applied Sciences (seminar course) (2024/2025)   6  eLearning
Master's degree in Mathematics Functional analysis (2023/2024)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2023/2024)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2023/2024)   6  eLearning
Master's degree in Mathematics Mathematical Modelling in the Applied Sciences (seminar course) (2023/2024)   6  eLearning
Master's degree in Mathematics Functional analysis (2022/2023)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2022/2023)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2022/2023)   6  eLearning
Master's degree in Mathematics Mathematical Modelling in the Applied Sciences (seminar course) (2022/2023)   6  eLearning
Master's degree in Mathematics Functional analysis (2021/2022)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2021/2022)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2021/2022)   6  eLearning
Master's degree in Mathematics Mathematical Modelling in the Applied Sciences (seminar course) (2021/2022)   6  eLearning
Master's degree in Mathematics Partial differential equations (2021/2022)   6  eLearning (Teoria 1)
Master's degree in Mathematics Functional analysis (2020/2021)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2020/2021)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2020/2021)   6  eLearning
Master's degree in Mathematics Mathematical Modelling in the Applied Sciences (seminar course) (2020/2021)   6  eLearning
Master's degree in Mathematics Functional analysis (2019/2020)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2019/2020)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2019/2020)   6  eLearning
Master's degree in Mathematics Mathematical Modelling in the Applied Sciences (seminar course) (2019/2020)   6  eLearning
Master's degree in Mathematics Functional analysis (2018/2019)   12  eLearning (Teoria 2)
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2018/2019)   12  eLearning (Teoria 1)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2018/2019)   6  eLearning (Teoria)
Master's degree in Mathematics Mathematical methods for applied sciences (seminar course) (2018/2019)   6  eLearning
Master's degree in Mathematics Functional analysis (2017/2018)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2017/2018)   12  eLearning (Teoria 2)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2017/2018)   6  eLearning
Master's degree in Mathematics Mathematical methods for applied sciences (seminar course) (2017/2018)   6  eLearning
Master's degree in Mathematics Functional analysis (2016/2017)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2016/2017)   12  eLearning (Teoria 2)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2016/2017)   6  eLearning (Teoria 2)
Master's degree in Mathematics Mathematical methods for applied sciences (seminar course) (2016/2017)   6  eLearning
Master's degree in Mathematics Partial differential equations (2016/2017)   6  eLearning
Master's degree in Mathematics Functional analysis (2015/2016)   12    (Parte 2)
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2015/2016)   12    (teoria 1)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2015/2016)   6   
Master's degree in Mathematics Mathematical methods for applied sciences (seminar course) (2015/2016)   6   
Master's degree in Mathematics Functional analysis (2014/2015)   12    (Parte 2)
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2014/2015)   12    (Teoria 1)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2014/2015)   6   
Master's degree in Mathematics Mathematical methods for applied sciences (seminar course) (2014/2015)   6   
Master's degree in Mathematics Functional analysis (2013/2014)   12    (Parte 2)
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2013/2014)   12    (Teoria)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2013/2014)   6   
Master's degree in Mathematics Mathematical methods in life sciences (seminar course) (2013/2014)   6   
Master's degree in Mathematics Functional analysis (2012/2013)   12    (Teoria)
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2012/2013)   12    (Teoria)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2012/2013)   6   
Master's degree in Mathematics Functional anaysis (2011/2012)   12    (Teoria)
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2011/2012)   12    (Teoria)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2011/2012)   6   
Master's degree in Mathematics Functional anaysis (2010/2011)   12    (Teoria)
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2010/2011)   12    (Teoria)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2010/2011)   6   
Master's degree in Mathematics Functional anaysis (2009/2010)   12    (Esercitazioni)
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2009/2010)   12    (Teoria)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2009/2010)   6   
Degree in Applied Mathematics (until a.y. 2008/2009) Complements of Mathematical Analysis (2008/2009)   5   
Bachelor's degree in Multimedia Information Technology (until 2008-2009) Mathematical analysis 1 (2008/2009)   6   
Degree in Applied Mathematics (until a.y. 2008/2009) Mathematical analysis 2 (2008/2009)   10    Modulo avanzato 1
Masters in Intelligent and Multimedia Systems Complements of Mathematical Analysis (2007/2008)   5   
Degree in Applied Mathematics (until a.y. 2008/2009) Mathematical analysis 1 (2007/2008)   9    mod.1
Degree in Applied Mathematics (until a.y. 2008/2009) Mathematical analysis 2 (2007/2008)   10    modulo avanzato
Degree in Applied Mathematics (until a.y. 2008/2009) Mathematical analysis 1 (2006/2007)   9    Modulo base
Degree in Applied Mathematics (until a.y. 2008/2009) Mathematical analysis 2 (2006/2007)   10    Modulo avanzato
Modulo base
Masters in Intelligent and Multimedia Systems Complements of Mathematical Analysis (2005/2006)   5   
Degree in Applied Mathematics (until a.y. 2008/2009) Mathematical analysis 1 (2005/2006)   9    Modulo avanzato
Bachelor's degree in Multimedia Information Technology (until 2008-2009) Mathematical analysis 2 (2005/2006)   5   
Bachelor in Computer Science (until 2008-2009 academic year) Mathematical analysis (2004/2005)   6     
Bachelor in Information Technology: Multimedia Mathematical analysis 2 (2004/2005)   5     
Masters in Intelligent and Multimedia Systems Complements of Mathematical Analysis (2003/2004)   5     
Bachelor in Computer Science (until 2008-2009 academic year) Mathematical analysis (2003/2004)   6     
Bachelor in Information Technology: Multimedia Mathematical analysis 1 (2003/2004)   6     
Bachelor in Computer Science (until 2008-2009 academic year) Mathematical analysis (2002/2003)   6     
Bachelor in Information Technology: Multimedia Mathematical analysis 1 (2002/2003)   6     
Bachelor in Information Technology: Multimedia Mathematical analysis 2 (2002/2003)   5     
Bachelor in Computer Science (until 2008-2009 academic year) Mathematical analysis (2001/2002)   8     
Bachelor in Information Technology: Multimedia Mathematical analysis 1 (2001/2002)   8     
Bachelor in Information Technology: Multimedia Mathematical analysis 2 (2001/2002)   4     
Bachelor in Computer Science (old system) Mathematical Analysis I (2000/2001)   1     
Bachelor in Computer Science (old system) Mathematical Analysis II (2000/2001)   0     
Bachelor in Computer Science (old system) Mathematical Analysis II (1999/2000)   1     

Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:

  • Eventi di Terza Missione: eventi di Public Engagement e Formazione Continua.
  • Insegnamenti di Terza Missione: insegnamenti che fanno parte di Corsi di Studio come Corsi di formazione continua, Corsi di perfezionamento e aggiornamento professionale, Corsi di perfezionamento, Master e Scuole di specializzazione.

Research groups

Analysis of PDE and Calculus of Variations
The research topics of this group cover calculus of variations, geometric measure theory, optimal control theory, optimal transport theory and applications.
INdAM - Research Unit at the University of Verona
We collect here the scientific activities of the Research Unit of Istituto Nazionale di Alta Matematica INdAM at the University of Verona
Research interests
Topic Description Research area
Partial differential equations of elliptic type Studying existence, regularity, and qualitative properties of solutions to second-order elliptic equations and systems of equations, possibly by variational techniques Mathematical methods and models
Elliptic equations and elliptic systems
Geometric measure and integration theory, integral and normal currents in optimization Geometric measure theory, integral and normal currents; optimization problems for networks of curves and surfaces. Mathematical methods and models
Manifolds
Optimal transportation theory Optimal transportation theory Mathematical methods and models
Manifolds
Variational problems in a geometric measure-theoretic setting Geometric variational and evolution problems: minimal surfaces, motion by mean curvature. Optimal mass transport theory. Mathematical methods and models
Calculus of variations and optimal control; optimization
Projects
Title Starting date
Nonlinear partial differential equations describing FROnt propagation, Geometric variational problems and Singularities - NFROGS 9/1/24
Geometric Evolution of Multi Agent Systems 11/1/20
Geometric Measure Theoretical approaches to Optimal Networks 3/22/18
Computer Engineering for Industry 4.0 1/1/18
CUMIN - Currents and Minimizing Networks 9/1/17
Geometric evolution of curves, surfaces and networks 3/14/17
Studio matematico e modellazione della cicatrizzazione di tessuti epiteliali 9/1/14
Indagini non invasive degli affreschi di Leonardo della Sala delle Asse (Castello Sforzesco, Milano) mediante Thermal Quasi-Reflectography per la caratterizzazione degli strati superficiali 5/27/14
Trasporto ottimo di massa, disuguaglianze geometriche e funzionali e applicazioni (PRIN 2008 ESTERNO) 3/22/10
Some mathematical models in image processing and interfaces motion (Azione Integrata Italia-Spagna 2009) 1/1/09
Energie di interfaccia e problemi parabolici-iperbolici in ambiente discreto e continuo (GNAMPA 2008 ESTERNO) 2/1/08
Metodi variazionali nella teoria del trasporto ottimo di massa e nella teoria geometrica della misura (PRIN 2006 ESTERNO) 2/9/07
Fenomeni di evoluzione non lineari suggeriti dalla Fisica e dalla Biologia (GNAMPA 2006 ESTERNO) 1/1/06
Alcuni problemi di matematica pura ed applicata 1/1/05
Calcolo delle Variazioni (PRIN 2004 ESTERNO) 11/30/04
Alcuni problemi di matematica pura ed applicata (continuazione, anno 2004) 1/1/04
Calcolo delle Variazioni (PRIN 2002 ESTERNO) 12/16/02
Nonlinear partial differential equations describing front propagation and other singular phenomena <br> (HPRN-CT-2002-00274) 6/1/02




Organization

Department facilities

Share