Teoria e tecniche del riconoscimento - Teoria (2007/2008)

Corso a esaurimento

Codice insegnamento
4S00072
Docente
Vittorio Murino
crediti
4
Settore disciplinare
INF/01 - INFORMATICA
Lingua di erogazione
Italiano
Periodo
3° Q dal 7-apr-2008 al 13-giu-2008.

Per visualizzare la struttura dell'insegnamento a cui questo modulo appartiene, consultare * organizzazione dell'insegnamento

Orario lezioni

3° Q
Giorno Ora Tipo Luogo Note
martedì 8.30 - 11.30 lezione Aula B  
mercoledì 14.30 - 16.30 esercitazione Laboratorio didattico Gamma dal 30-apr-2008  al 13-giu-2008
mercoledì 16.30 - 18.30 lezione Aula B  

Obiettivi formativi

Il corso intende fornire i fondamenti teorici e le metodologie principali relative all’analisi e riconoscimento automatico di dati di qualsiasi tipo, detti tipicamente pattern. Questa disciplina è alla base o completa molte altre discipline di più larga diffusione come l’elaborazione delle immagini, la visione, l’intelligenza artificiale, l’analisi di grosse quantità di dati, le basi di dati, e numerose altre.

Nel corso verrà data enfasi alle tecniche probabilistiche con particolar riferimento all’addestramento di sistemi volti al riconoscimento (anche di immagini, ma non solo) e alle reti neurali.

Le applicazioni che questa disciplina coinvolge sono molteplici. Tra queste ci sono le applicazioni legati all’elaborazione delle immagini e visione, data mining, la bioinformatica, analisi ed interpretazione di dati medicali e biologici (e.g., genomica, proteomica, sierologia, etc.), la biometria, l'imaging biomedicale, la videosorveglianza, la robotica, il riconoscimento della voce e numerose altre.

Programma

* Introduzione: cos’è, a cosa serve, sistemi, applicazioni
* Riconoscimento e classificazione
* Estrazione e rappresentazione di caratteristiche (feature)
* Teoria della decisione di Bayes
* Stima dei parametri e metodi non parametrici
* Classificatori lineari, non lineari e funzioni discriminanti
* Cenni di Pattern Recognition di tipo sintattico
* Selezione di feature
* Reti neurali
* Metodi di classificazione non supervisionata (clustering)
* Metodi avanzati: Hidden Markov Models.

Il corso viene svolto in 32 ore di lezioni frontali e 12 ore di laboratorio. L'attività di laboratorio prevede la pratica e risoluzione di esercizi mediante l'uso di MATLAB volti all'apprendimento pratico e alla miglior comprensione della teoria svolta a lezione.

Modalità d'esame

La verifica del profitto avverrà mediante un'attività di progetto e una breve prova orale. Il progetto riguarderà gli argomenti trattati a lezione con riferimento all'elaborazione delle immagini e visione, ma anche altre applicazioni potranno essere considerate. La prova orale verterà sui temi sviluppati a lezione e potrà essere sostituita da una prova scritta con brevi domande simili alla prova orale.
Il superamento della prova porta all'acquisizione di 5 crediti, ovvero di 1 unità didattica.