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Given a language L over a finite alphabet A we say that L is:

e factorial if L contains all the factors of its words, i.e.
wel=uvel

@ anti-factorial if no word in L is factor of another word in L, i.e.
wel=uvé¢l

For example, the set of factors of a (finite or infinite) word is a factorial
language.
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Minimal Forbidden Words

Definition

Given a factorial language L, we say that w € A* is a minimal forbidden
word for L if:

QO w¢l

@ every proper factor of wis in L.
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G. Fici Minimal Forbidden Words and Applications



Minimal Forbidden Words

Definition

Given a factorial language L, we say that w € A* is a minimal forbidden
word for L if:

QO w¢l

@ every proper factor of wis in L.

The (antifactorial) set of mfw for L is denoted by MF(L).

If L is the set of factors of a word w, the set MF(w) = MF(L) is
usually called the set of minimal forbidden factors of w.
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Minimal Forbidden Words

Definition

Given a factorial language L, we say that w € A* is a minimal forbidden
word for L if:

QO w¢l

@ every proper factor of wis in L.

The (antifactorial) set of mfw for L is denoted by MF(L).

If L is the set of factors of a word w, the set MF(w) = MF(L) is
usually called the set of minimal forbidden factors of w.

Over A= {a, b} let w = aabbbaa. We have:

MF(w) = {aaa, bbbb, aba, abba, bab, baab}
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The map p: L— MUF(L) is injective, i.e., different languages have
different sets of minimal forbidden words.
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The map p: L— MUF(L) is injective, i.e., different languages have
different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define L(M) as
the largest (factorial) language avoiding M, i.e. L(M) = (A* MA*)<.
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The map p: L— MUF(L) is injective, i.e., different languages have
different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define L(M) as

the largest (factorial) language avoiding M, i.e. L(M) = (A* MA*)<.
The map A\ : M — L(M) is injective and is the inverse of the map u.
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The map p: L— MUF(L) is injective, i.e., different languages have
different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define L(M) as
the largest (factorial) language avoiding M, i.e. L(M) = (A* MA*)<.
The map A : M — L(M) is injective and is the inverse of the map .

In fact, L(MF(L)) = L and MF(L(M)) = M.

Theorem (Crochemore, Mignosi, Restivo [1])

There is a one-to-one correspondence between factorial and antifactorial
languages.
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The map p: L— MUF(L) is injective, i.e., different languages have
different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define L(M) as
the largest (factorial) language avoiding M, i.e. L(M) = (A* MA*)<.
The map A : M — L(M) is injective and is the inverse of the map .

In fact, L(MF(L)) = L and MF(L(M)) = M.

Theorem (Crochemore, Mignosi, Restivo [1])

There is a one-to-one correspondence between factorial and antifactorial
languages.

Moreover, this correspondence preserves the regularity, i.e., a language is
regular iff its set of mfw is regular [1].
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CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton)

T(M).
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CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton)

T(M).

Theorem (Crochemore, Restivo, Mignosi, [1])

A determinitic automaton A(M) accepting L(M) can be computed from
T (M) in linear time.

Moreover, if M = MF(w), then A(M) is the factor automaton (DAWG)
of w, I.e., it is minimal.
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CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton)

T(M).

Theorem (Crochemore, Restivo, Mignosi, [1])

A determinitic automaton A(M) accepting L(M) can be computed from
T (M) in linear time.

Moreover, if M = MF(w), then A(M) is the factor automaton (DAWG)
of w, I.e., it is minimal.

Theorem (Crochemore, Restivo, Mignosi, [1])

Given the factor automaton of a word w, a trie accepting MF(w) can
be computed in linear time.
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BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton A(L) accepting a factorial language L,
it is possible to build in quadratic time (which is optimal in the worst
case) a deterministic automaton accepting MJF(L).

G. Fici Minimal Forbidden Words and Applications



BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton A(L) accepting a factorial language L,
it is possible to build in quadratic time (which is optimal in the worst
case) a deterministic automaton accepting MJF(L).

Actually, if the input is the factor automaton of a word w, i.e., the
minimal deterministic automaton accepting Fact(w), the previous
algorithm takes linear time.
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BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton A(L) accepting a factorial language L,
it is possible to build in quadratic time (which is optimal in the worst
case) a deterministic automaton accepting MJF(L).

Actually, if the input is the factor automaton of a word w, i.e., the
minimal deterministic automaton accepting Fact(w), the previous
algorithm takes linear time.

The bijective correspondence between w and MJF(w) can be computed
in linear time in each direction.
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Combinatorial properties of MFW

Given a word w, the repetition index r(w) is the length of the longest
factor of w that has more than one occurrences in w.
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Combinatorial properties of MFW

Given a word w, the repetition index r(w) is the length of the longest
factor of w that has more than one occurrences in w.

Proposition

Let w € A* be generated by a memoryless source with identical symbol
probabilities. Then the probability that r(w) < 3log, |w| tends to 1 as
|w| tends to infinity.
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Combinatorial properties of MFW

Given a word w, the repetition index r(w) is the length of the longest
factor of w that has more than one occurrences in w.

Proposition

Let w € A* be generated by a memoryless source with identical symbol
probabilities. Then the probability that r(w) < 3log, |w| tends to 1 as
|w| tends to infinity.

Proposition

Let m(w) be the length of the longest mff of w. Then m(w) = r(w) + 2.
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Combinatorial properties of MFW

Given a word w, the repetition index r(w) is the length of the longest
factor of w that has more than one occurrences in w.

Proposition

Let w € A* be generated by a memoryless source with identical symbol
probabilities. Then the probability that r(w) < 3log, |w| tends to 1 as
|w| tends to infinity.

Proposition

Let m(w) be the length of the longest mff of w. Then m(w) = r(w) + 2.

Let w = aabbbaa. Then r(w) = 2 since every factor of length 3 is
unioccurrent. A longest mff for w has length 4, that is, m(w) = 4.
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Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.
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Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of MF(w).

For example, let w = 0100101001. Then AD = {000, 10101,11} is an
antidictionary for w.
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Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of MF(w).

For example, let w = 0100101001. Then AD = {000, 10101,11} is an
antidictionary for w.

The idea is to eliminate redundant letters of w, which can be retrieved
from AD.
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Data Compression using Antidictionaries

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of MF(w).

For example, let w = 0100101001. Then AD = {000, 10101,11} is an
antidictionary for w.

The idea is to eliminate redundant letters of w, which can be retrieved
from AD.

Crochemore, Mignosi, Restivo and Salemi [2] proposed a lossless
antidictionary-based compressor.
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Data Compression using Antidictionaries

ENCODER (AD, w € {0,1}*)

lL.veeg v+c¢;

2. for a < first to last letter of w

3. if Vsuffix v/ of v, v/0 and v'1 ¢ AD

4. v+ va

5. v+ va

6. return (|v|,7);

Example: w = 0100101001.
v=c¢ v(w)=¢
v=0 v(w) =0
v =01 ~y(w) =01 v/ =11 € AD
v =010 ~v(w) =01
v = 0100 ~v(w) = 010 v/ =000 € AD
v = 01001 ~v(w) = 010 v/ =11 € AD
v = 010010 ~v(w) = 010
v = 0100101 ~v(w) = 0101 v/ =11€ AD
v = 01001010 ~v(w) = 0101 v/ =10101 € AD
v = 010010100 ~v(w) = 0101 "=000 € AD
v = 0100101001 ~v(w) = 0101 v/ =11€ AD
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Data Compression using Antidictionaries

DECODER (AD, v, n)

1. v+ g

2. while |v| < n

3. if for some v’ suffix of v and letter a, v'a € AD
4. V < va;

5. else

6. a < next letter of ~;

7. vV va;

8. return (v);

v=c¢ y(w)=¢

v=0 v(w) =0

v =01 y(w) =01 v/ =11 € AD
v =010 ~v(w) =01

v = 0100 ~(w) = 010 v/ =000 € AD
v = 01001 ~v(w) = 010 v/ =11 € AD
v = 010010 ~(w) = 010

v = 0100101 ~(w) = 0101 v =11 € AD
v = 01001010 ~v(w) = 0101 ’'=10101 € AD
v = 010010100 ~v(w) = 0101 v/ =000 € AD
v = 0100101001 ~(w) = 0101 Vv =11 € AD
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Word Reconstruction

Another application of mfw concerns the reconstruction of a word from a
set of factors [6].
This is a theoretical simplified model for the Fragment Assembly Problem.
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Word Reconstruction

Another application of mfw concerns the reconstruction of a word from a
set of factors [6].

This is a theoretical simplified model for the Fragment Assembly Problem.

Given a finite set of words Z, we say that a word w is Z-compatible if:
Q 7 C Fact(w);

@ every factor of w shorter than m(w) appears in some word of Z.

Example

Z = {abb, bba}. Then abba is Z-compatible.
T = {ab, bb, ba}. Then no word is Z-compatible.
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Word Reconstruction

Another application of mfw concerns the reconstruction of a word from a
set of factors [6].
This is a theoretical simplified model for the Fragment Assembly Problem.

Definition

Given a finite set of words Z, we say that a word w is Z-compatible if:
Q 7 C Fact(w);

@ every factor of w shorter than m(w) appears in some word of Z.

| \

Example

Z = {abb, bba}. Then abba is Z-compatible.
T = {ab, bb, ba}. Then no word is Z-compatible.

For any T, there exists at most one Z-compatible word.
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Word Reconstruction

The algorithm for the reconstruction takes a set Z in input, and in linear
time on |Z| reconstructs an Z-compatible word if this exists, or gives a
negative answer.
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Word Reconstruction

The algorithm for the reconstruction takes a set Z in input, and in linear
time on |Z| reconstructs an Z-compatible word if this exists, or gives a
negative answer.

Idea: if we are able to retrieve the set MF(w), then we can retrieve w.
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Word Reconstruction

The algorithm for the reconstruction takes a set Z in input, and in linear
time on |Z| reconstructs an Z-compatible word if this exists, or gives a
negative answer.

Idea: if we are able to retrieve the set MF(w), then we can retrieve w.

So, first we construct the word
wp = $i1$i2$ R $i,,$

where iy, ..., i, =7 and $ ¢ A . Then we compute the set MF(wy).
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Word Reconstruction

The algorithm for the reconstruction takes a set Z in input, and in linear
time on |Z| reconstructs an Z-compatible word if this exists, or gives a
negative answer.

Idea: if we are able to retrieve the set MF(w), then we can retrieve w.
So, first we construct the word

wi = $i$0% - $i,$
where iy, ..., i, =7 and $ ¢ A . Then we compute the set MF(wy).
But how can we retrieve MF(w) from MF(wy)?
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Word Reconstruction

The algorithm for the reconstruction takes a set Z in input, and in linear
time on |Z| reconstructs an Z-compatible word if this exists, or gives a
negative answer.

Idea: if we are able to retrieve the set MF(w), then we can retrieve w.
So, first we construct the word

wy = $i$0%---$i,%
where iy, ..., i, =7 and $ ¢ A . Then we compute the set MF(wy).

But how can we retrieve MF(w) from MF(wy)?

Proposition

If w is T-compatible, then MF(w) = MF(w;) N ASTW),
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Word Reconstruction

The algorithm for the reconstruction takes a set Z in input, and in linear
time on |Z| reconstructs an Z-compatible word if this exists, or gives a
negative answer.

Idea: if we are able to retrieve the set MF(w), then we can retrieve w.
So, first we construct the word

wy = $i$0%---$i,%
where iy, ..., i, =7 and $ ¢ A . Then we compute the set MF(wy).

But how can we retrieve MF(w) from MF(wy)?

Proposition

If w is T-compatible, then MF(w) = MF(w;) N ASTW),

Wonderful, but we don't know the value m(w)...
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Word Reconstruction

Let S be the set of words aub € MF(wy) N A* such that:
Q au$,$ub € Fact(wy);
@ aux, xub ¢ Fact(wy) for any x € A.
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Word Reconstruction

Let S be the set of words aub € MF(wy) N A* such that:
Q au$,$ub € Fact(wy);
@ aux, xub ¢ Fact(wy) for any x € A.

Proposition

Let Iy, b be the lengths of the shortest and second shortest words in S.
If w is T-compatible, then either MJF(w) = MF(wi) N Al or
MF(w) = MF(w) N AL,
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Word Reconstruction

Let S be the set of words aub € MF(wy) N A* such that:
Q au$,$ub € Fact(wy);
@ aux, xub ¢ Fact(wy) for any x € A.

Proposition

Let Iy, b be the lengths of the shortest and second shortest words in S.
If w is T-compatible, then either MJF(w) = MF(wi) N Al or
MF(w) = MF(w) N AL,

So, the algorithm is the following:

- Try with h: if the set MF(w1) N A is the set of mff of a finite word,
retrieve the word;

- otherwise, try with h: if the set MJF(w;) N A% is the set of mff of a
finite word, retrieve the word;

- otherwise, no Z-compatible word exists.
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