Minimal Forbidden Words and Applications

Gabriele Fici

Dipartimento di Matematica e Informatica Università di Palermo

December 9th, 2013

Given a language L over a finite alphabet A we say that L is:

Given a language L over a finite alphabet A we say that L is:

• factorial if L contains all the factors of its words, i.e. $uv \in L \Rightarrow u, v \in L$

Given a language L over a finite alphabet A we say that L is:

- factorial if L contains all the factors of its words, i.e. $uv \in L \Rightarrow u, v \in L$
- anti-factorial if no word in L is factor of another word in L, i.e. $uv \in L \Rightarrow u, v \notin L$

Given a language L over a finite alphabet A we say that L is:

- factorial if L contains all the factors of its words, i.e. $uv \in L \Rightarrow u, v \in L$
- anti-factorial if no word in L is factor of another word in L, i.e. $uv \in L \Rightarrow u, v \notin L$

For example, the set of factors of a (finite or infinite) word is a factorial language.

Definition

Given a factorial language L, we say that $w \in A^*$ is a minimal forbidden word for L if:

- $w \notin L$;
- every proper factor of w is in L.

Definition

Given a factorial language L, we say that $w \in A^*$ is a minimal forbidden word for L if:

- $w \notin L$;
- 2 every proper factor of w is in L.

The (antifactorial) set of mfw for L is denoted by $\mathcal{MF}(L)$.

Definition

Given a factorial language L, we say that $w \in A^*$ is a minimal forbidden word for L if:

- \bullet $w \notin L$;
- 2 every proper factor of w is in L.

The (antifactorial) set of mfw for L is denoted by $\mathcal{MF}(L)$.

If L is the set of factors of a word w, the set $\mathcal{MF}(w) = \mathcal{MF}(L)$ is usually called the set of minimal forbidden factors of w.

Definition

Given a factorial language L, we say that $w \in A^*$ is a minimal forbidden word for L if:

- $w \notin L$;
- 2 every proper factor of w is in L.

The (antifactorial) set of mfw for L is denoted by $\mathcal{MF}(L)$.

If L is the set of factors of a word w, the set $\mathcal{MF}(w) = \mathcal{MF}(L)$ is usually called the set of minimal forbidden factors of w.

Example

Over $A = \{a, b\}$ let w = aabbbaa. We have:

$$\mathcal{MF}(w) = \{aaa, bbbb, aba, abba, bab, baab\}$$

The map $\mu: L \mapsto \mathcal{MF}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

The map $\mu: L \mapsto \mathcal{MF}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M) = (A^*MA^*)^c$.

The map $\mu: L \mapsto \mathcal{MF}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M) = (A^*MA^*)^c$. The map $\lambda: M \mapsto \mathcal{L}(M)$ is injective and is the inverse of the map μ .

The map $\mu: L \mapsto \mathcal{MF}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M) = (A^*MA^*)^c$. The map $\lambda: M \mapsto \mathcal{L}(M)$ is injective and is the inverse of the map μ .

In fact, $\mathcal{L}(\mathcal{MF}(L)) = L$ and $\mathcal{MF}(\mathcal{L}(M)) = M$.

The map $\mu: L \mapsto \mathcal{MF}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M) = (A^*MA^*)^c$. The map $\lambda: M \mapsto \mathcal{L}(M)$ is injective and is the inverse of the map μ .

In fact, $\mathcal{L}(\mathcal{MF}(L)) = L$ and $\mathcal{MF}(\mathcal{L}(M)) = M$.

Theorem (Crochemore, Mignosi, Restivo [1])

There is a one-to-one correspondence between factorial and antifactorial languages.

The map $\mu: L \mapsto \mathcal{MF}(L)$ is injective, i.e., different languages have different sets of minimal forbidden words.

Conversely, given an antifactorial language M, we can define $\mathcal{L}(M)$ as the largest (factorial) language avoiding M, i.e. $\mathcal{L}(M) = (A^*MA^*)^c$. The map $\lambda: M \mapsto \mathcal{L}(M)$ is injective and is the inverse of the map μ .

In fact, $\mathcal{L}(\mathcal{MF}(L)) = L$ and $\mathcal{MF}(\mathcal{L}(M)) = M$.

Theorem (Crochemore, Mignosi, Restivo [1])

There is a one-to-one correspondence between factorial and antifactorial languages.

Moreover, this correspondence preserves the regularity, i.e., a language is regular iff its set of mfw is regular [1].

CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton) $\mathcal{T}(M)$.

CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton) $\mathcal{T}(M)$.

Theorem (Crochemore, Restivo, Mignosi, [1])

A determinitic automaton $\mathcal{A}(M)$ accepting $\mathcal{L}(M)$ can be computed from $\mathcal{T}(M)$ in linear time.

Moreover, if $M = \mathcal{MF}(w)$, then $\mathcal{A}(M)$ is the factor automaton (DAWG) of w, i.e., it is minimal.

CMR Algorithm

If M is finite, then it can be represented on a trie (tree-like automaton) $\mathcal{T}(M)$.

Theorem (Crochemore, Restivo, Mignosi, [1])

A determinitic automaton $\mathcal{A}(M)$ accepting $\mathcal{L}(M)$ can be computed from $\mathcal{T}(M)$ in linear time.

Moreover, if $M = \mathcal{MF}(w)$, then $\mathcal{A}(M)$ is the factor automaton (DAWG) of w, i.e., it is minimal.

Theorem (Crochemore, Restivo, Mignosi, [1])

Given the factor automaton of a word w, a trie accepting $\mathcal{MF}(w)$ can be computed in linear time.

BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton $\mathcal{A}(L)$ accepting a factorial language L, it is possible to build in quadratic time (which is optimal in the worst case) a deterministic automaton accepting $\mathcal{MF}(L)$.

BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton A(L) accepting a factorial language L, it is possible to build in quadratic time (which is optimal in the worst case) a deterministic automaton accepting $\mathcal{MF}(L)$.

Actually, if the input is the factor automaton of a word w, i.e., the minimal deterministic automaton accepting Fact(w), the previous algorithm takes linear time.

BCMRS Algorithm

Theorem (Béal, Crochemore, Mignosi, Restivo, Sciortino [4])

Given a deterministic automaton A(L) accepting a factorial language L, it is possible to build in quadratic time (which is optimal in the worst case) a deterministic automaton accepting $\mathcal{MF}(L)$.

Actually, if the input is the factor automaton of a word w, i.e., the minimal deterministic automaton accepting Fact(w), the previous algorithm takes linear time.

Corollary

The bijective correspondence between w and $\mathcal{MF}(w)$ can be computed in linear time in each direction.

Given a word w, the repetition index r(w) is the length of the longest factor of w that has more than one occurrences in w.

Given a word w, the repetition index r(w) is the length of the longest factor of w that has more than one occurrences in w.

Proposition

Let $w \in A^*$ be generated by a memoryless source with identical symbol probabilities. Then the probability that $r(w) \leq 3 \log_{|A|} |w|$ tends to 1 as |w| tends to infinity.

Given a word w, the repetition index r(w) is the length of the longest factor of w that has more than one occurrences in w.

Proposition

Let $w \in A^*$ be generated by a memoryless source with identical symbol probabilities. Then the probability that $r(w) \le 3 \log_{|A|} |w|$ tends to 1 as |w| tends to infinity.

Proposition

Let m(w) be the length of the longest mff of w. Then m(w) = r(w) + 2.

Given a word w, the repetition index r(w) is the length of the longest factor of w that has more than one occurrences in w.

Proposition

Let $w \in A^*$ be generated by a memoryless source with identical symbol probabilities. Then the probability that $r(w) \le 3 \log_{|A|} |w|$ tends to 1 as |w| tends to infinity.

Proposition

Let m(w) be the length of the longest mff of w. Then m(w) = r(w) + 2.

Example

Let w = aabbbaa. Then r(w) = 2 since every factor of length 3 is unioccurrent. A longest mff for w has length 4, that is, m(w) = 4.

Minimal forbidden words can be used to compress a text.

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of $\mathcal{MF}(w)$.

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of $\mathcal{MF}(w)$.

For example, let w = 0100101001. Then $AD = \{000, 10101, 11\}$ is an antidictionary for w.

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of $\mathcal{MF}(w)$.

For example, let w = 0100101001. Then $AD = \{000, 10101, 11\}$ is an antidictionary for w.

The idea is to eliminate redundant letters of w, which can be retrieved from AD.

Minimal forbidden words can be used to compress a text.

Definition

An antidictionary for a word w is a subset of $\mathcal{MF}(w)$.

For example, let w = 0100101001. Then $AD = \{000, 10101, 11\}$ is an antidictionary for w.

The idea is to eliminate redundant letters of w, which can be retrieved from AD.

Crochemore, Mignosi, Restivo and Salemi [2] proposed a lossless antidictionary-based compressor.

```
ENCODER (AD, w \in \{0,1\}^*)
1. \mathbf{v} \leftarrow \varepsilon; \gamma \leftarrow \varepsilon;
2. for a \leftarrow first to last letter of w
3. if \forall suffix v' of v, v'0 and v'1 \notin AD
4. \gamma \leftarrow \gamma a;
5. v \leftarrow va;
6. return (|v|, \gamma);
Example: w = 0100101001.
 v = \varepsilon
                            \gamma(w) = \varepsilon
 v = 0
                         \gamma(w)=0
                        \gamma(w) = 01
                                                 v'=11 \in AD
 v = 01
 v = 010
                           \gamma(w) = 01
                                           v' = 000 \in AD
                        \gamma(w) = 010
 v = 0100
                                                    v'=11 \in AD
 v = 01001
                          \gamma(w) = 010
                        \gamma(w) = 010
 v = 010010
                                             v'=11 \in AD
 v = 0100101
                        \gamma(w) = 0101
                         \gamma(w) = 0101 v' = 10101 \in AD
 v = 01001010
                           \gamma(w) = 0101 v' = 000 \in AD
 v = 010010100
                            \gamma(w) = 0101
                                                    v'=11 \in AD
 v = 0100101001
```

```
DECODER (AD, \gamma, n)
1. v \leftarrow \varepsilon;
2. while |v| < n
3. if for some v' suffix of v and letter a, v'a \in AD
4. v \leftarrow v\bar{a};
5. else
6. a \leftarrow \text{next letter of } \gamma;
7. v \leftarrow va;
8. return (v);
                            \gamma(w) = \varepsilon
 v = \varepsilon
                      \gamma(w)=0
 v = 0
                      \gamma(w) = 01
                                                  v'=11 \in AD
 v = 01
 v = 010
                   \gamma(w) = 01
                                          v' = 000 \in AD
                     \gamma(w) = 010
 v = 0100
                     \gamma(w) = 010
                                               v'=11 \in AD
 v = 01001
  v = 010010
                       \gamma(w) = 010
                    \gamma(w) = 0101 v' = 11 \in AD

\gamma(w) = 0101 v' = 10101 \in AD
 v = 0100101
  v = 01001010
                      \gamma(w) = 0101 v' = 000 \in AD
  v = 010010100
  v = 0100101001
                            \gamma(w) = 0101
                                                  v'=11 \in AD
```

Another application of mfw concerns the reconstruction of a word from a set of factors [6].

This is a theoretical simplified model for the Fragment Assembly Problem.

Another application of mfw concerns the reconstruction of a word from a set of factors [6].

This is a theoretical simplified model for the Fragment Assembly Problem.

Definition

Given a finite set of words \mathcal{I} , we say that a word w is \mathcal{I} -compatible if:

- \cup $\mathcal{I} \subset Fact(w)$;
- ullet every factor of w shorter than m(w) appears in some word of \mathcal{I} .

Example

 $\mathcal{I} = \{abb, bba\}$. Then abba is \mathcal{I} -compatible.

 $\mathcal{I} = \{ab, bb, ba\}$. Then no word is \mathcal{I} -compatible.

Another application of mfw concerns the reconstruction of a word from a set of factors [6].

This is a theoretical simplified model for the Fragment Assembly Problem.

Definition

Given a finite set of words \mathcal{I} , we say that a word w is \mathcal{I} -compatible if:

- \cup $\mathcal{I} \subset Fact(w)$;
- **②** every factor of w shorter than m(w) appears in some word of \mathcal{I} .

Example

 $\mathcal{I} = \{abb, bba\}$. Then abba is \mathcal{I} -compatible.

 $\mathcal{I} = \{ab, bb, ba\}$. Then no word is \mathcal{I} -compatible.

Theorem

For any \mathcal{I} , there exists at most one \mathcal{I} -compatible word.

The algorithm for the reconstruction takes a set $\mathcal I$ in input, and in linear time on $|\mathcal I|$ reconstructs an $\mathcal I$ -compatible word if this exists, or gives a negative answer.

The algorithm for the reconstruction takes a set $\mathcal I$ in input, and in linear time on $|\mathcal I|$ reconstructs an $\mathcal I$ -compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{MF}(w)$, then we can retrieve w.

The algorithm for the reconstruction takes a set $\mathcal I$ in input, and in linear time on $|\mathcal I|$ reconstructs an $\mathcal I$ -compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{MF}(w)$, then we can retrieve w.

So, first we construct the word

$$w_1 = \{i_1\}i_2\}\cdots \{i_n\}$$

where $i_1, \ldots, i_n = \mathcal{I}$ and $f \notin A$. Then we compute the set $\mathcal{MF}(w_1)$.

The algorithm for the reconstruction takes a set $\mathcal I$ in input, and in linear time on $|\mathcal I|$ reconstructs an $\mathcal I$ -compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{MF}(w)$, then we can retrieve w.

So, first we construct the word

$$w_1 = \{i_1\}i_2\}\cdots \{i_n\}$$

where $i_1,\ldots,i_n=\mathcal{I}$ and $\$\notin A$. Then we compute the set $\mathcal{MF}(w_1)$.

But how can we retrieve $\mathcal{MF}(w)$ from $\mathcal{MF}(w_1)$?

The algorithm for the reconstruction takes a set $\mathcal I$ in input, and in linear time on $|\mathcal I|$ reconstructs an $\mathcal I$ -compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{MF}(w)$, then we can retrieve w.

So, first we construct the word

$$w_1 = \{i_1\}i_2\}\cdots \{i_n\}$$

where $i_1,\ldots,i_n=\mathcal{I}$ and $\$\notin A$. Then we compute the set $\mathcal{MF}(w_1)$.

But how can we retrieve $\mathcal{MF}(w)$ from $\mathcal{MF}(w_1)$?

Proposition

If w is \mathcal{I} -compatible, then $\mathcal{MF}(w) = \mathcal{MF}(w_1) \cap A^{\leq m(w)}$.

The algorithm for the reconstruction takes a set $\mathcal I$ in input, and in linear time on $|\mathcal I|$ reconstructs an $\mathcal I$ -compatible word if this exists, or gives a negative answer.

Idea: if we are able to retrieve the set $\mathcal{MF}(w)$, then we can retrieve w.

So, first we construct the word

$$w_1 = \{i_1\}i_2\}\cdots \{i_n\}$$

where $i_1, \ldots, i_n = \mathcal{I}$ and $f \notin A$. Then we compute the set $\mathcal{MF}(w_1)$.

But how can we retrieve $\mathcal{MF}(w)$ from $\mathcal{MF}(w_1)$?

Proposition

If w is \mathcal{I} -compatible, then $\mathcal{MF}(w) = \mathcal{MF}(w_1) \cap A^{\leq m(w)}$.

Wonderful, but we don't know the value m(w)...

Let S be the set of words $aub \in \mathcal{MF}(w_1) \cap A^*$ such that:

- **1** $au\$,\$ub \in Fact(w_1);$
- ② $aux, xub \notin Fact(w_1)$ for any $x \in A$.

Let S be the set of words $aub \in \mathcal{MF}(w_1) \cap A^*$ such that:

- \bullet au\$, \$ub \in Fact(w_1);
- **2** $aux, xub \notin Fact(w_1)$ for any $x \in A$.

Proposition

Let l_1, l_2 be the lengths of the shortest and second shortest words in S. If w is \mathcal{I} -compatible, then either $\mathcal{MF}(w) = \mathcal{MF}(w_1) \cap A^{l_1}$ or $\mathcal{MF}(w) = \mathcal{MF}(w_1) \cap A^{l_2}$.

Let S be the set of words $aub \in \mathcal{MF}(w_1) \cap A^*$ such that:

- \bullet au\$, \$ub \in Fact(w_1);
- 2 $aux, xub \notin Fact(w_1)$ for any $x \in A$.

Proposition

Let l_1, l_2 be the lengths of the shortest and second shortest words in S. If w is \mathcal{I} -compatible, then either $\mathcal{MF}(w) = \mathcal{MF}(w_1) \cap A^{l_1}$ or $\mathcal{MF}(w) = \mathcal{MF}(w_1) \cap A^{l_2}$.

So, the algorithm is the following:

- Try with l_1 : if the set $\mathcal{MF}(w_1) \cap \mathcal{A}^{l_1}$ is the set of mff of a finite word, retrieve the word;
- otherwise, try with l_2 : if the set $\mathcal{MF}(w_1) \cap A^{l_2}$ is the set of mff of a finite word, retrieve the word;
- otherwise, no \mathcal{I} -compatible word exists.

- [1] M. Crochemore, F. Mignosi, A. Restivo. Automata and Forbidden Words. *Inform. Proc. Lett.* 67: 111–117, 1998.
- [2] M. Crochemore, F. Mignosi, A. Restivo, S. Salemi. Text Compression Using Antidictionaries. *ICALP '99. Lecture Notes Comput. Sci.* 1644: 261–270, 1999.
- [3] F. Mignosi, A. Restivo, M. Sciortino. Words and forbidden factors. *Theoret. Comput. Sci.* 273: 99–117, 2002.
- [4] M.-P. Béal, M. Crochemore, F. Mignosi, A. Restivo, M. Sciortino. Computing forbidden words of regular languages. *Fundam. Inform.* 20: 1–15, 2003.
- [5] M.-P. Béal, M. Crochemore, G. Fici. Presentations of Constrained Systems With Unconstrained Positions. *IEEE Trans. Inform. Theory* 51: 1891–1900, 2005.
- [6] G. Fici, F. Mignosi, A. Restivo, M. Sciortino. Word Assembly through Minimal Forbidden Words. *Theoret. Comput. Sci.* 359: 214–230, 2006.

Thank You