## Fourier Transform

## Overview

- Signals as functions (1D, 2D)
- Tools
- 1D Fourier Transform
- Summary of definition and properties in the different cases
- CTFT, CTFS, DTFS, DTFT
- DFT
- 2D Fourier Transforms
- Generalities and intuition
- Examples
- A bit of theory
- Discrete Fourier Transform (DFT)
- Discrete Cosine Transform (DCT)


## Signals as functions

1. Continuous functions of real independent variables

- 1D: $f=f(x)$
- 2D: $f=f(x, y) x, y$
- Real world signals (audio, ECG, images)

2. Real valued functions of discrete variables

- 1D: $f=f[k]$
- 2D: $f=f[i, j]$
- Sampled signals

3. Discrete functions of discrete variables

- 1D: $y=y[k]$
- 2D: $y=y[i, j]$
- Sampled and quantized signals
- For ease of notations, we will use the same notations for 2 and 3


## Images as functions

- Gray scale images: 2D functions
- Domain of the functions: set of $(x, y)$ values for which $f(x, y)$ is defined : 2D lattice [i,j] defining the pixel locations
- Set of values taken by the function : gray levels
- Digital images can be seen as functions defined over a discrete domain $\{i, j$ : $0<i<I, 0<j<J\}$
- I,J: number of rows (columns) of the matrix corresponding to the image
- $f=f[i, j]$ : gray level in position $[i, j]$


## Example 1: $\delta$ function

$$
\delta[i, j]=\left\{\begin{array}{lc}
1 & i=j=0 \\
0 & i, j \neq 0 ; i \neq j
\end{array}\right.
$$



$$
\delta[i, j-J]=\left\{\begin{array}{cc}
1 & i=0 ; j=J \\
0 & \text { otherwise }
\end{array}\right.
$$



## Example 2: Gaussian

Continuous function

$$
f(x, y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Discrete version

$$
f[i, j]=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$



## Example 3: Natural image



## Example 3: Natural image



## Fourier Transform

- Different formulations for the different classes of signals
- Summary table: Fourier transforms with various combinations of continuous/discrete time and frequency variables.
- Notations:
- CTFT: continuous time FT: $t$ is real and $f$ real $(f=\omega)(C T, C F)$
- DTFT: Discrete Time FT: $t$ is discrete $(t=n)$, $f$ is real ( $f=\omega$ ) (DT, CF)
- CTFS: CT Fourier Series (summation synthesis): $t$ is real AND the function is periodic, $f$ is discrete ( $f=k$ ), (CT, DF)
- DTFS: DT Fourier Series (summation synthesis): $t=n$ AND the function is periodic, $f$ discrete ( $\mathrm{f}=\mathrm{k}$ ), (DT, DF)
- P: periodical signals
- T: sampling period
- $\omega_{\mathrm{s}}$ : sampling frequency $\left(\omega_{\mathrm{s}}=2 \pi / T\right)$
- For DTFT: T=1 $\rightarrow \omega_{\mathrm{s}}=2 \pi$


# Continuous Time Fourier Transform (CTFT) 

Time is a real variable ( t )
Frequency is a real variable ( $\omega$ )

## CTFT: Concept

## 



- A signal can be represented as a weighted sum of sinusoids.

■ Fourier Transform is a change of basis, where the basis functions consist of sins and cosines (complex exponentials).

## Continuous Time Fourier Transform (CTFT)

- Define frequency
$=1 / T$
cycles per unit time cycles per unit distance
- Here $\mathrm{f}=1 \quad \mathrm{~T}=1$



## Fourier Transform

- Cosine/sine signals are easy to define and interpret.
- However, it turns out that the analysis and manipulation of sinusoidal signals is greatly simplified by dealing with related signals called complex exponential signals.
- A complex number has real and imaginary parts: $z=x+j y$
- A complex exponential signal:

$$
r \mathrm{e}^{j \alpha}=r(\cos \alpha+j \sin \alpha)
$$

## CTFT

- Continuous Time Fourier Transform
- Continuous time a-periodic signal
- Both time (space) and frequency are continuous variables
- NON normalized frequency $\omega$ is used
- Fourier integral can be regarded as a Fourier series with fundamental frequency approaching zero
- Fourier spectra are continuous
- A signal is represented as a sum of sinusoids (or exponentials) of all frequencies over a continuous frequency interval

Fourier integral $\quad F(\omega)=\int f(t) e^{-j \omega t} d t \quad$ analysis

$$
f(t)=\frac{1}{2 \pi} \int_{\omega}^{t} F(\omega) e^{j \omega t} d \omega \quad \text { synthesis }
$$

## Then CTFT becomes

■ Fourier Transform of a 1D continuous signal

$$
F(u)=\int_{-\infty}^{\infty} f(x) e^{-j 2 \pi u x} d x
$$

"Euler's formula" $\quad e^{-j 2 \pi u x}=\cos (2 \pi u x)-j \sin (2 \pi u x)$

■ Inverse Fourier Transform

$$
f(x)=\int_{-\infty}^{\infty} F(u) e^{j 2 \pi u x} d u
$$

## CTFT: change of notations

■ Fourier Transform of a 1D continuous signal

$$
F(\omega)=\int_{-\infty}^{\infty} f(x) e^{-j \omega x} d x
$$

"Euler's formula" $\quad e^{-j \omega x}=\cos (\omega x)-j \sin (\omega x)$
■ Inverse Fourier Transform

$$
\begin{gathered}
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega x} d \omega \\
\omega \rightarrow 2 \pi u
\end{gathered}
$$

Change of notations:

$$
\left\{\begin{array}{l}
\omega_{x} \rightarrow 2 \pi u \\
\omega_{y} \rightarrow 2 \pi v
\end{array}\right.
$$

## CTFT

- Replacing the variables

$$
\begin{aligned}
& F(2 \pi u)=F(u)=\int_{-\infty}^{\infty} f(x) e^{-j 2 \pi u x} d x= \\
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(u) e^{j 2 \pi u x} d(2 \pi u)=\int_{-\infty}^{\infty} F(u) e^{j 2 \pi u x} d u
\end{aligned}
$$

- More compact notations

$$
\begin{aligned}
& F(u)=\int_{-\infty}^{\infty} f(x) e^{-j 2 \pi u x} d x \\
& f(x)=\int_{-\infty}^{\infty} F(u) e^{j 2 \pi u x} d u
\end{aligned}
$$

## Sinusoids

- Frequency domain characterization of signals $\quad F(\omega)=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t$



Signal domain

Frequency domain (spectrum, absolute value of the transform)

## Gaussian

Time domain


## Frequency domain



## rect

Time domain


Frequency domain


## Example



## Example



# Discrete Fourier Transform (DFT) 

The easiest way to get to it
Time is a discrete variable ( $\mathrm{t}=\mathrm{n}$ )
Frequency is a discrete variable ( $\mathrm{f}=\mathrm{k}$ )

## DFT

- The DFT can be considered as a generalization of the CTFT to discrete series

$$
\begin{aligned}
F[k] & =\frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j 2 \pi k n / N} \\
f[n] & =\sum_{k=0}^{N-1} F[k] e^{j 2 \pi k n / N} \\
n & =0,1, \ldots, N-1 \\
k & =0,1, \ldots, N-1
\end{aligned}
$$

- In order to calculate the DFT we start with $\mathrm{k}=0$, calculate $\mathrm{F}(0)$ as in the formula below, then we change to $u=1$ etc

$$
F[0]=\frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j 2 \pi 0 n / N}=\frac{1}{N} \sum_{n=0}^{N-1} f[n]=\bar{f}
$$

- $F[0]$ is the average value of the function $f[n] 0$
- This is also the case for the CTFT


## Example 1




## Example 2



## DFT

- About $\mathrm{M}^{2}$ multiplications are needed to calculate the DFT
- The transform $F[k]$ has the same number of components of $f[n]$, that is $N$
- The DFT always exists for signals that do not go to infinity at any point
- Using the Eulero's formula

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

$$
\underset{\uparrow}{F[k]=\frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j 2 \pi k n / N}=\frac{1}{N} \sum_{n=0}^{N-1} f[n](\cos (j 2 \pi k n / N)-j \sin (j 2 \pi k n / N))}
$$

frequency component $k$
discrete trigonometric functions

## Intuition

- The FT decomposed the signal over its harmonic components and thus represents it as a sum of linearly independent complex exponential functions
- Thus, it can be interpreted as a "mathematical prism"



## DFT is a complex number

- $\mathrm{F}[\mathrm{k}]$ in general are complex numbers

$$
\begin{aligned}
& F[k]=\operatorname{Re}\{F[k]\}+j \operatorname{Im}\{F[k]\} \\
& F[k]=\mid F[k] \exp \{j \measuredangle F[k]\} \\
& \left\{\begin{array}{c}
|F[k]|=\sqrt{\operatorname{Re}\{F[k]\}^{2}+\operatorname{Im}\{F[k]\}^{2}} \\
\measuredangle F[k]=\tan ^{-1}\left\{-\frac{\operatorname{Im}\{F[k]\}}{\operatorname{Re}\{F[k]\}}\right\}
\end{array}\right\} \\
& P[k]=\mid F[k]^{2} \\
& \text { power spectrum }
\end{aligned}
$$

## Example



a b
c $d$
FIGURE 4.2 (a) A discrete function of $M$ points, and (b) its Fourier spectrum. (c) A discrete function with twice the number of nonzero points, and (d) its Fourier spectrum.

## Let's take a bit more advanced perspective...

Book: Lathi, Signal Processing and Linear Systems

## Overview

| Transform | Time | Frequency | Analysis/Synthesis | Duality |
| :--- | :--- | :--- | :--- | :--- |
| (Continuous Time) <br> Fourier Transform <br> (CTFT) | C | C | $F(\omega)=\int_{t} f(t) e^{-j \omega t} d t$ <br> $f(t)=\frac{1}{2 \pi} \int_{\text {a }} F(\omega) e^{j \omega t} d \omega$ | Self-dual |
| (Continuous Time) <br> Fourier Series (CTFS) | C | P |  | $F[k]=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j 2 \pi k t / T} d t$ <br> $f(t)=\sum_{k} F[k] e^{j 2 \pi k t / T}$ |
| Discrete Time Fourier <br> Transform (DTFT) | D | C <br> P | Dual with <br> DTFT |  |
| Discrete Time Fourier <br> Series (DTFS) | D | D | $F(\Omega)=\sum_{k=-\infty}^{+\infty} f[k] e^{-j \Omega k}$ <br> $f[k]=\frac{1}{2 \pi} \int_{2 \pi} F(\Omega) e^{j \Omega k} d \Omega$ | Dual with <br> CTFS |

## Linking continuous and discrete domains




- DT signals can be seen as sampled versions of CT signals
- Both CT and DT signals can be of finite duration or periodic
- There is a duality between periodicity and discretization
- Periodic signals have discrete frequency (DF) transform ( $f=k$ ) $\rightarrow$ CTFS
- Discrete time signals have periodic transform $\rightarrow$ DTFT
- DT periodic signals have DF periodic transforms $\rightarrow$ DTFS, DFT


## Dualities

SIGNAL DOMAIN


## Discrete time signals

## Sequences of samples

- f[k]: sample values
- Assumes a unitary spacing among samples ( $\mathrm{T}_{\mathrm{s}}=1$ )
- Normalized frequency $\Omega$
- Transform
- DTFT for NON periodic sequences
- CTFS for periodic sequences
- DFT for periodized sequences
- All transforms are $2 \pi$ periodic

$$
\Omega_{s}=\omega_{s} T_{s}=\frac{2 \pi}{T_{s}} T_{s}=2 \pi
$$

## Sampled signals

- $\mathrm{f}\left(\mathrm{kT} \mathrm{T}_{\mathrm{s}}\right)$ : sample values
- The sampling interval (or period) is $T_{s}$
- Non normalized frequency $\omega$
- Transform
- DTFT
- CSTF
- DFT
- BUT accounting for the fact that the sequence values have been generated by sampling a real signal $\rightarrow f_{k}=f\left(k T_{s}\right)$
- All transforms are periodic with period $\omega_{\mathrm{s}}$

$$
\omega_{s}=\frac{2 \pi}{T_{s}}
$$

## Connection DTFT-CTFT

sampling


## CTFS

- Continuous Time Fourier Series
- Continuous time periodic signals
- The signal is periodic with period T
- The transform is "sampled" (it is a series)


$$
\begin{array}{ll}
F[k]=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j 2 \pi k t / T} d t & \text { coefficients of the Fourier series } \\
f(t)=\sum_{k} F[k] e^{j 2 \pi k t / T} & \text { periodic signal }
\end{array}
$$

## CTFS

- Representation of a continuous time signal as a sum of orthogonal components in a complete orthogonal signal space
- The exponentials are the basis functions
- Properties
- even symmetry $\rightarrow$ only cosinusoidal components
- odd symmetry $\rightarrow$ only sinusoidal components


## DTFT

- Discrete Time Fourier Transform
- Discrete time a-periodic signal

- The transform is periodic and continuous with period $\omega_{s}=\frac{2 \pi}{T_{s}}$ non normalized frequency

$$
\begin{aligned}
& F(\omega)=\sum_{n} f[n] e^{-j 2 \pi \omega n / \omega_{s}}=\sum_{n} f[n] e^{-j \omega n T_{s}} \\
& f[n]=\frac{1}{\omega_{s}} \int_{-\omega_{s} / 2}^{\omega_{s} / 2} F\left(e^{j \omega t}\right) e^{j 2 \pi \omega n / \omega_{s}} d \omega=\frac{2 \pi}{T_{s}} \int_{-\pi / T_{s}}^{\pi / T_{s}} F\left(e^{j \omega t}\right) e^{j \omega n T_{s}} d \omega \\
& \omega_{s}=\frac{2 \pi}{T_{s}} \rightarrow \frac{2 \pi \omega}{\omega_{s}}=\frac{2 \pi \omega}{2 \pi} T_{s}=\omega T_{s} \\
& T_{s}=2 \pi / \omega_{s} \quad \begin{array}{l}
\text { sampling interval in time } \leftrightarrow \text { periodicity in frequency } \\
\text { the closer the samples, the farther the replicas }
\end{array}
\end{aligned}
$$

## DTFT with normalized frequency

- Normalized frequency: change of variables

$$
\begin{array}{ll}
\quad \Omega=\omega T_{s} & \text { normalized frequency } \\
\Omega_{s}=\omega_{s} T_{s}=\frac{2 \pi}{T_{s}} T_{s}=2 \pi & \\
\Omega_{s}=2 \pi & \text { periodicity in the normalized frequency domain } \\
F(\Omega)=\sum_{n=-\infty}^{+\infty} f[k] e^{-j n \Omega} & \\
f[n]=\frac{1}{2 \pi} \int_{2 \pi} F(\Omega) e^{j k \Omega} d \Omega & \begin{array}{l}
\text { If Ts>1, the DTFT can be seen } \\
\text { as a stretched periodized } \\
\text { version of the CTFT. }
\end{array}
\end{array}
$$

## DTFT with normalized frequency

- $F(\Omega)$ can be_obtained from $F_{c}(\omega)$ by replacing $\omega$ with $\Omega / T_{s}$.
- Thus $F(\Omega)$ is identical to $F(\omega)$ frequency scaled and stratched by a factor $1 / T_{s}$, where $T_{s}$ is the sampling interval in time domain
- Notations

$$
\begin{array}{ll}
\text { DTFT } \longrightarrow & F(\Omega)=\frac{1}{T_{s}} F_{c}\left(\frac{\Omega}{T_{s}}\right) \quad \text { CTFT } \\
& \omega_{s}=\frac{2 \pi}{T_{s}} \rightarrow T_{s}=\frac{2 \pi}{\omega_{s}} \quad \text { periodicity of the spectrum } \\
& \omega=\frac{\Omega}{T_{s}} \rightarrow \Omega=\omega T_{s} \quad \begin{array}{l}
\text { normalized frequency (the spectrum } \\
\text { is 2 } 2 \pi-\text { periodic) }
\end{array} \\
& F(\Omega) \rightarrow F\left(\omega T_{s}\right)=F\left(\omega 2 \pi / \omega_{s}\right) \\
& F(\Omega)=\sum_{n=-\infty}^{+\infty} f[n] e^{-j \Omega n} \rightarrow F\left(\omega T_{s}\right)=F(\omega)=\sum_{k=-\infty}^{+\infty} f[n] e^{-j 2 n \pi \omega / \omega_{s}}
\end{array}
$$

## DTFT with unitary frequency

$$
\begin{aligned}
& \Omega=2 \pi u \quad(\omega=2 \pi f) \\
& F(\Omega)=\sum_{n=-\infty}^{\infty} f[n] e^{-j \Omega n} \rightarrow F(u)=\sum_{n=-\infty}^{\infty} f[n] e^{-j 2 \pi n u} \\
& f[n]=\frac{1}{2 \pi} \int_{2 \pi} F(\Omega) e^{j \Omega n} d \Omega \rightarrow f[n]=\int_{1} F(u) e^{j 2 \pi n u} d u=\int_{-\frac{1}{2}}^{\frac{1}{2}} F(u) e^{j 2 \pi n u} d u \\
& \left\{\begin{array}{l}
F(u)=\sum_{n=-\infty}^{\infty} f[k] e^{-j 2 \pi n u} \\
f[n]=\int_{-\frac{1}{2}}^{\frac{1}{2}} F(u) e^{j 2 \pi n u} d u
\end{array}\right. \\
& \text { NOTE: when } T_{s}=1, \Omega=\omega \text { and the spectrum is } \\
& 2 \pi \text {-periodic. The unitary frequency } u=2 \pi / \Omega \\
& \text { corresponds to the signal frequency } f=2 \pi / \omega \text {. } \\
& \text { This could give a better intuition of the } \\
& \text { transform properties. }
\end{aligned}
$$

## Summary

- Sampled signals are sequences of sampels
- Looking at the sequence as to a set of samples obtained by sampling a real signal with sampling frequency $\omega_{s}$ we can still use the formulas for calculating the transforms as derived for the sequences by
- Stratching the time axis (and thus squeezing the frequency axis if $\mathrm{T}_{\mathrm{s}}>1$ )
normalized frequency
(sample series)
spectral periodicity in $\Omega$

$$
\longrightarrow \Omega=\stackrel{\hbar}{\omega} T_{s}
$$

frequency (sampled signal)

$$
2 \pi \rightarrow \omega_{s}=\frac{2 \pi}{T_{s}}
$$

$$
\text { spectral periodicity in } \omega
$$

- Enclosing the sampling interval $T_{s}$ in the value of the sequence samples (DFT)

$$
f_{k}=T_{s} f\left(k T_{s}\right)
$$

## Connection DTFT-CTFT

sampling


## Differences DTFT-CTFT

- The DTFT is periodic with period $\Omega_{\mathrm{s}}=2 \pi$ (or $\omega_{\mathrm{s}}=2 \pi / \mathrm{T}_{\mathrm{s}}$ )
- The discrete-time exponential $e^{j \Omega n}$ has a unique waveform only for values of $\Omega$ in a continuous interval of $2 \pi$
- Numerical computations can be conveniently performed with the Discrete Fourier Transform (DFT)


## DTFS

- Discrete Time Fourier Series
- Discrete time periodic sequences of period $N_{0}$
- Fundamental frequency
$\Omega_{0}=2 \pi / N_{0}$
$F[k]=\frac{1}{N_{0}} \sum_{n=0}^{N_{0}-1} f[n] e^{-j k n 2 \pi / N_{0}}$

$f[n]=\sum_{k=0}^{N_{0}-1} F[k] e^{j k n 2 \pi / N_{0}}$


## DTFS: Example

$$
\begin{aligned}
& N_{0}=20 \\
& T_{s}=1 \\
& \Omega_{s}=2 \pi \\
& \Omega_{0}=\pi / 10
\end{aligned}
$$




[Lathi, pag 621]
Fig. 10.1 Discrete-time sinusoid $\sin 0.1 \pi k$ and its Fourier spectra.

## Discrete Fourier Transform (DFT)

$$
\begin{aligned}
& F[k]=\sum_{n=0}^{N_{0}-1} f_{n} f^{-j n_{0} k}=\sum_{n=0}^{N_{0}-1} f_{n} e^{-j \frac{2 \pi}{N_{0}} n k} \\
& f[n]=\frac{1}{N_{0}} \sum_{k=0}^{N_{0}-1} F[k] e^{j n_{0} k}=\frac{1}{N_{0}} \sum_{k=0}^{N_{0}-1} F[k] e^{j n_{0} \frac{2 \pi}{N_{0}} k} \\
& \Omega_{0}=\frac{2 \pi}{N_{0}}
\end{aligned}
$$

- The DFT transforms $\mathrm{N}_{0}$ samples of a discrete-time signal to the same number of discrete frequency samples
- The DFT and IDFT are a self-contained, one-to-one transform pair for a length- $\mathrm{N}_{0}$ discrete-time signal (that is, the DFT is not merely an approximation to the DTFT as discussed next)
- However, the DFT is very often used as a practical approximation to the DTFT


## DFT


zero padding


DFT
zero padding

Increasing the number of zeros augments the "resolution" of the transform since the samples of the DFT gets "closer"


## Properties

For real signals $f(t)$
$f(t) \rightarrow \hat{f}(\omega)$
$f(-t) \rightarrow \hat{f}(-\omega)=\hat{f}^{*}(\omega)$
Proof
Table 2.1 Fourier Transform Properties

| Property | Function | Fourier Transform |  |
| :--- | :---: | :---: | :---: |
| Inverse | $f(t)$ | $\hat{f}(\omega)$ |  |
| Convolution | $\hat{f}(t)$ | $2 \pi f(-\omega)$ | $(2.15)$ |
| Multiplication | $f_{1} \star f_{2}(t)$ | $\hat{f}_{1}(\omega) \hat{f}_{2}(\omega)$ | $\mathbf{( 2 . 1 6 )}$ |
| Translation | $f_{1}(t) f_{2}(t)$ | $\frac{1}{2 \pi} \hat{f}_{1} \star \hat{f}_{2}(\omega)$ | $(2.17)$ |
| Modulation | $f(t-u)$ | $\mathrm{e}^{-i u \omega} \hat{f}(\omega)$ | $\mathbf{( 2 . 1 8 )}$ |
| Scaling | $\mathrm{e}^{i \xi t} f(t)$ | $\hat{f}(\omega-\xi)$ | $\mathbf{( 2 . 1 9 )}$ |
| Time derivatives | $f(t / s)$ | $\|s\| \hat{f}(s \omega)$ | $\mathbf{( 2 . 2 0 )}$ |
| Frequency derivatives | $(-i t)^{p} f(t)$ | $f^{(p)}(t)$ | $(i \omega)^{p} \hat{f}(\omega)$ |
| Complex conjugate | $f^{*}(t)$ | $\hat{f}^{(p)}(\omega)$ | $\mathbf{( 2 . 2 1 )}$ |
| Hermitian symmetry | $f(t) \in \mathbb{R}$ | $\hat{f}(-\omega)=\hat{f}^{*}(-\omega)$ | $\mathbf{( 2 . 2 3 )}$ |

$\mathfrak{J}\{f(-t)\}=\int_{-\infty}^{+\infty} f(-t) e^{-j \omega \alpha} d t=\int_{-\infty}^{+\infty} f\left(t^{\prime}\right) e^{j \omega \omega^{\prime}} d t^{\prime}=\hat{f}(-\omega)$

## Discrete Cosine Transform (DCT)

- Operate on finite discrete sequences (as DFT)
- A discrete cosine transform (DCT) expresses a sequence of finitely many data points in terms of a sum of cosine functions oscillating at different frequencies
- DCT is a Fourier-related transform similar to the DFT but using only real numbers
- DCT is equivalent to DFT of roughly twice the length, operating on real data with even symmetry (since the Fourier transform of a real and even function is real and even), where in some variants the input and/or output data are shifted by half a sample
- There are eight standard DCT variants, out of which four are common
- Strong connection with the Karunen-Loeven transform
- VERY important for signal compression


## DCT

- DCT implies different boundary conditions than the DFT or other related transforms
- A DCT, like a cosine transform, implies an even periodic extension of the original function
- Tricky part
- First, one has to specify whether the function is even or odd at both the left and right boundaries of the domain
- Second, one has to specify around what point the function is even or odd
- In particular, consider a sequence abcd of four equally spaced data points, and say that we specify an even left boundary. There are two sensible possibilities: either the data is even about the sample $a$, in which case the even extension is dcbabcd, or the data is even about the point halfway between a and the previous point, in which case the even extension is dcbaabcd ( $a$ is repeated).


## Symmetries

DCT-II:

## DCT-I:




DCT-III:

----1 $111+\phi 11111111111111111 \$ 1111111111111----$



$---1+1111111111111111111111111111111111+---$
0.0000


## DCT

$$
\begin{aligned}
& X_{k}=\sum_{n=0}^{N_{0}-1} x_{n} \cos \left[\frac{\pi}{N_{0}}\left(n+\frac{1}{2}\right) k\right] \quad k=0, \ldots ., N_{0}-1 \\
& x_{n}=\frac{2}{N_{0}}\left\{\frac{1}{2} X_{0}+\sum_{k=0}^{N_{0}-1} X_{k} \cos \left[\frac{\pi k}{N_{0}}\left(k+\frac{1}{2}\right)\right]\right\}
\end{aligned}
$$

- Warning: the normalization factor in front of these transform definitions is merely a convention and differs between treatments.
- Some authors multiply the transforms by $\left(2 / N_{0}\right)^{1 / 2}$ so that the inverse does not require any additional multiplicative factor.
- Combined with appropriate factors of $\sqrt{ } 2$ (see above), this can be used to make the transform matrix orthogonal.


## Images vs Signals

1D

- Signals
- Frequency
- Temporal
- Spatial
- Time (space) frequency characterization of signals
- Reference space for
- Filtering
- Changing the sampling rate
- Signal analysis
- ....
- Images
- Frequency
- Spatial
- Space/frequency characterization of 2D signals
- Reference space for
- Filtering
- Up/Down sampling
- Image analysis
- Feature extraction
- Compression
- ....


## 2D spatial frequencies

- 2D spatial frequencies characterize the image spatial changes in the horizontal ( x ) and vertical ( y ) directions
- Smooth variations -> low frequencies
- Sharp variations -> high frequencies



## 2D Frequency domain

Large vertical frequencies correspond to horizontal lines

Large horizontal and vertical frequencies correspond sharp grayscale changes in both directions


## Vertical grating



## Double grating



## Smooth rings



## 2D box

2D sinc




## Margherita Hack


log amplitude of the spectrum

## Einstein


log amplitude of the spectrum

## What we are going to analyze

- 2D Fourier Transform of continuous signals (2D-CTFT)

$$
\text { 1D } \quad F(\omega)=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t, f(t)=\int_{-\infty}^{+\infty} F(\omega) e^{j \omega t} d t
$$

- 2D Fourier Transform of discrete space signals (2D-DTFT)

$$
\text { 1D } \quad F(\Omega)=\sum_{k=-\infty}^{\infty} f[k] e^{-j \Omega k}, f[k]=\frac{1}{2 \pi} \int_{2 \pi} F(\Omega) e^{j \Omega k} d t
$$

- 2D Discrete Fourier Transform (2D-DFT)

$$
\text { 1D } \quad F_{r}=\sum_{k=0}^{N_{0}-1} f[k] e^{-j r \Omega_{0} k}, f_{N_{0}}[k]=\frac{1}{N_{0}} \sum_{r=0}^{N_{0}-1} F_{r} e^{j r \Omega_{0} k}, \Omega_{0}=\frac{2 \pi}{N_{0}}
$$

## 2D Continuous Fourier Transform

- Continuous case ( $x$ and $y$ are real) - 2D-CTFT (notation 1 )
$\hat{f}\left(\omega_{x}, \omega_{y}\right)=\int_{-\infty}^{+\infty} f(x, y) e^{-j\left(\omega_{x} x+\omega_{y} y\right)} d x d y$
$f(x, y)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{+\infty} \hat{f}\left(\omega_{x}, \omega_{y}\right) e^{j\left(\omega_{x} x+\omega_{y} y\right)} d \omega_{x} d \omega_{y}$
$\iint f(x, y) g^{*}(x, y) d x d y=\frac{1}{4 \pi^{2}} \iint \hat{f}\left(\omega_{x}, \omega_{y}\right) \hat{g}^{*}\left(\omega_{x}, \omega_{y}\right) d \omega_{x} d \omega_{y}$ Parseval formula $f=g \rightarrow \iint|f(x, y)|^{2} d x d y=\frac{1}{4 \pi^{2}} \iint\left|\hat{f}\left(\omega_{x}, \omega_{y}\right)\right|^{2} d \omega_{x} d \omega_{y}$

Plancherel equality

## 2D Continuous Fourier Transform

- Continuous case ( $x$ and $y$ are real) - 2D-CTFT

$$
\begin{aligned}
\omega_{x} & =2 \pi u \\
\omega_{y} & =2 \pi v \\
\hat{f}(u, v) & =\int_{-\infty}^{+\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y \\
f(x, y) & =\frac{1}{4 \pi^{2}} \int_{-\infty}^{+\infty} \hat{f}(u, v) e^{j 2 \pi(u x+v y)}(2 \pi)^{2} d u d v= \\
& =\frac{1}{4 \pi^{2}} \int_{-\infty}^{+\infty} \hat{f}(u, v) e^{j 2 \pi(u x+v y)}(2 \pi)^{2} d u d v
\end{aligned}
$$

## 2D Continuous Fourier Transform

- 2D Continuous Fourier Transform (notation 2)

$$
\begin{aligned}
\hat{f}(u, v) & =\int_{-\infty}^{+\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y \\
f(x, y) & =\int_{-\infty}^{+\infty} \hat{f}(u, v) e^{j 2 \pi(u x+v y)} d u d v= \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(x, y)|^{2} d x d y & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\hat{f}(u, v)|^{2} d u d v \quad \text { Plancherel's equality }
\end{aligned}
$$

## 2D Discrete Fourier Transform

The independent variable ( $\mathrm{t}, \mathrm{x}, \mathrm{y}$ ) is discrete

$$
F_{r}=\sum_{k=0}^{N_{0}-1} f[k] e^{-j r \Omega_{0} k} \quad F[u, v]=\sum_{i=0}^{N_{0}-1} \sum_{k=0}^{N_{0}-1} f[i, k] e^{-j \Omega_{0}(u i+v k)}
$$

$$
f_{N_{0}}[k]=\frac{1}{N_{0}} \sum_{r=0}^{N_{0}-1} F_{r} e^{j r \Omega_{0} k} \square f_{N_{0}}[i, k]=\frac{1}{N_{0}^{2}} \sum_{u=0}^{N_{0}-1} \sum_{v=0}^{N_{0}-1} F[u, v] e^{j \Omega_{0}(u i+v k)}
$$

$\Omega_{0}=\frac{2 \pi}{N_{0}}$
$\Omega_{0}=\frac{2 \pi}{N_{0}}$
[Lathi's notations]

## Delta

- Sampling property of the 2D-delta function (Dirac's delta)

$$
\int_{-\infty}^{\infty} \delta\left(x-x_{0}, y-y_{0}\right) f(x, y) d x d y=f\left(x_{0}, y_{0}\right)
$$

- Transform of the delta function

$$
F\{\delta(x, y)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) e^{-j 2 \pi(u x+v y)} d x d y=1
$$

$F\left\{\delta\left(x-x_{0}, y-y_{0}\right)\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(x-x_{0}, y-y_{0}\right) e^{-j 2 \pi(u x+y)} d x d y=e^{-j 2 \pi\left(\left(u_{0}+t y_{0}\right)\right.} \quad \begin{aligned} & \text { shifting } \\ & \text { property }\end{aligned}$

## Constant functions

- Inverse transform of the impulse function

$$
F^{-1}\{\delta(u, v)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(u, v) e^{j 2 \pi(u x+v)} d u d v=e^{j 2 \pi(0 x+v 0)}=1
$$

- Fourier Transform of the constant (=1 for all x and y )

$$
\begin{aligned}
& k(x, y)=1 \quad \forall x, y \\
& F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j 2 \pi(u x+v y)} d x d y=\delta(u, v)
\end{aligned}
$$

## Trigonometric functions

- Cosine function oscillating along the $x$ axis
- Constant along the $y$ axis

$$
\begin{aligned}
& s(x, y)=\cos (2 \pi f x) \\
& F\{\cos (2 \pi f x)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos (2 \pi f x) e^{-j 2 \pi(u x+v y)} d x d y= \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\frac{e^{j 2 \pi(f x)}+e^{-j 2 \pi(f x)}}{2}\right] e^{-j 2 \pi(u x+v y)} d x d y \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[e^{-j 2 \pi(u-f) x}+e^{-j 2 \pi(u+f) x}\right] e^{-j 2 \pi v y} d x d y= \\
& =\frac{1}{2} \int_{-\infty}^{\infty} e^{-j 2 \pi v y} d y \int_{-\infty}^{\infty}\left[e^{-j 2 \pi(u-f) x}+e^{-j 2 \pi(u+f) x}\right] d x=\frac{1}{2} 1 \int_{-\infty}^{\infty}\left[e^{-j 2 \pi(u-f) x}+e^{-j 2 \pi(u+f) x}\right] d x= \\
& \frac{1}{2}[\delta(u-f)+\delta(u+f)]
\end{aligned}
$$

## Vertical grating







Magnitudes

## Examples



## Properties

■ Linearity

- Shifting
- Modulation

■ Convolution

- Multiplication
- Separability

$$
a f(x, y)+b g(x, y) \Leftrightarrow a F(u, v)+b G(u, v)
$$

$$
f\left(x-x_{0}, y-x_{0}\right) \Leftrightarrow e^{-j 2 \pi\left(u x_{0}+v y_{0}\right)} F(u, v)
$$

$$
e^{j 2 \pi\left(u_{0} x+v_{0} y\right)} f(x, y) \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)
$$

$$
f(x, y)^{*} g(x, y) \Leftrightarrow F(u, v) G(u, v)
$$

$f(x, y) g(x, y) \Leftrightarrow F(u, v)^{*} G(u, v)$
$f(x, y)=f(x) f(y) \Leftrightarrow F(u, v)=F(u) F(v)$

## Separability

1. Separability of the 2D Fourier transform

- 2D Fourier Transforms can be implemented as a sequence of 1D Fourier Transform operations performed independently along the two axis

$$
\begin{aligned}
& F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y= \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi u x} e^{-j 2 \pi v y} d x d y=\int_{-\infty}^{\infty} e^{-j 2 \pi v y} d y \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi u x} d x= \\
& =\int_{-\infty}^{\infty} F(u, y) e^{-j 2 \pi v y} d y=F(u, v) \\
& \text { 2D DFT } \longrightarrow \begin{array}{c}
\text { 1D DFT along } \\
\text { the rows }
\end{array} \longrightarrow \begin{array}{c}
\text { 1D DFT along } \\
\text { the cols }
\end{array}
\end{aligned}
$$

## Separability

- Separable functions can be written as $f(x, y)=f(x) g(y)$

2. The FT of a separable function is the product of the FTs of the two functions

$$
\begin{aligned}
& F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y= \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x) g(y) e^{-j 2 \pi u x} e^{-j 2 \pi v y} d x d y=\int_{-\infty}^{\infty} g(y) e^{-j 2 \pi v y} d y \int_{-\infty}^{\infty} h(x) e^{-j 2 \pi u x} d x= \\
& =H(u) G(v) \\
& f(x, y)=h(x) g(y) \Rightarrow F(u, v)=H(u) G(v)
\end{aligned}
$$

## 2D Fourier Transform of a Discrete function

- Fourier Transform of a 2D a-periodic signal defined over a 2D discrete grid
- The grid can be thought of as a 2D brush used for sampling the continuous signal with a given spatial resolution $\left(T_{x}, T_{y}\right)$

1D $\quad F(\Omega)=\sum_{k=-\infty}^{\infty} f[k] e^{-j \Omega k}, f[k]=\frac{1}{2 \pi} \int_{2 \pi} F(\Omega) e^{j \Omega k} d t$

2D

$$
\begin{aligned}
& F\left(\Omega_{x}, \Omega_{y}\right)=\sum_{k_{1}=-\infty}^{+\infty} \sum_{k_{2}=-\infty}^{+\infty} f\left[k_{1}, k_{2}\right] e^{-j\left(k_{1} \Omega_{x}+k_{2} \Omega_{y}\right)} \\
& f[k]=\frac{1}{4 \pi^{2}} \int_{2 \pi 2 \pi} \int_{\pi} F\left(\Omega_{x}, \Omega_{y}\right) e^{j\left(k_{1} \Omega_{x}+k_{2} \Omega_{y}\right)} d \Omega_{x} \Omega_{y}
\end{aligned}
$$

$\Omega_{x}, \Omega_{y}$ : normalized frequency

## Unitary frequency notations

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Omega_{x}=2 \pi u \\
\Omega_{y}=2 \pi v
\end{array}\right. \\
& F(u, v)=\sum_{k_{1}=-\infty}^{+\infty} \sum_{k_{2}=-\infty}^{+\infty} f\left[k_{1}, k_{2}\right] e^{-j 2 \pi\left(k_{1} u+k_{2} v\right)} \\
& f\left[k_{1}, k_{2}\right]=\int_{-1 / 2}^{1 / 2} \int_{-1 / 2}^{1 / 2} F(u, v) e^{-j 2 \pi\left(k_{1} u+k_{2} v\right)} d u d v
\end{aligned}
$$

- The integration interval for the inverse transform has width=1 instead of $2 \pi$
- It is quite common to choose

$$
\frac{-1}{2} \leq u, v<\frac{1}{2}
$$

## Properties

- Periodicity: 2D Fourier Transform of a discrete a-periodic signal is periodic
- The period is 1 for the unitary frequency notations and $2 \pi$ for normalized frequency notations.
- Proof (referring to the firsts case)

$$
\begin{aligned}
F(u+k, v+l) & =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi((u+k) m+(v+l) n)} \\
& =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)} e^{-j 2 \pi k m} e^{-j 2 \pi l n}
\end{aligned}
$$ integers

$$
\begin{aligned}
& =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)} \\
& =F(u, v)
\end{aligned}
$$

## Properties

- Linearity
- shifting
- modulation
- convolution
- multiplication
- separability
- energy conservation properties also exist for the 2D Fourier Transform of discrete signals.
- NOTE: in what follows, $\left(k_{1}, k_{2}\right)$ is replaced by ( $m, n$ )


## 2D DTFT Properties

$\square$ Linearity $\quad a f[m, n]+b g[m, n] \Leftrightarrow a F(u, v)+b G(u, v)$

- Shifting $\quad f\left[m-m_{0}, n-n_{0}\right] \Leftrightarrow e^{-j 2 \pi\left(u m_{0}+v n_{0}\right)} F(u, v)$
- Modulation

$$
e^{j 2 \pi\left(u_{0} m+v_{0} n\right)} f[m, n] \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)
$$

- Convolution

$$
f[m, n]^{*} g[m, n] \Leftrightarrow F(u, v) G(u, v)
$$

- Multiplication

$$
f[m, n] g[m, n] \Leftrightarrow F(u, v)^{*} G(u, v)
$$

- Separable functions $\quad f[m, n]=f[m] f[n] \Leftrightarrow F(u, v)=F(u) F(v)$

■ Energy conservation $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}|f[m, n]|^{2}=\int_{-1 / 2}^{1 / 2} \int_{-1 / 2}^{1 / 2}|F(u, v)|^{2} d u d v$

## Impulse Train

■ Define a comb function (impulse train) as follows

$$
\operatorname{comb}_{M, N}[m, n]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta[m-k M, n-l N]
$$

where $M$ and $N$ are integers


Appendix

## 2D-DTFT: delta

- Define Kronecker delta function

$$
\delta[m, n]=\left\{\begin{array}{l}
1, \text { for } m=0 \text { and } n=0 \\
0, \text { otherwise }
\end{array}\right\}
$$

■ DT Fourier Transform of the Kronecker delta function

$$
F(u, v)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\left[\delta[m, n] e^{-j 2 \pi(u m+v n)}\right]=e^{-j 2 \pi(u 0+v 0)}=1
$$

## 2D DT Fourier Transform: constant

Fourier Transform of 1

$$
\begin{aligned}
f[k, l] & =1, \forall k, l \\
F[u, v] & =\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty}\left[1 e^{-j 2 \pi(u k+v l)}\right]= \\
& =\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(u-k, v-l)
\end{aligned}
$$

periodic with period 1 along $u$ and $v$

To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that the Fourier Transform has to be periodic with period 1.

