
Fourier Transform



Overview

• Signals as functions (1D, 2D)
– Tools

• 1D Fourier Transform
– Summary of definition and properties in the different cases

• CTFT, CTFS, DTFS, DTFT
• DFT

• 2D Fourier Transforms
– Generalities and intuition
– Examples
– A bit of theory

• Discrete Fourier Transform (DFT)

• Discrete Cosine Transform (DCT)



Signals as functions

1. Continuous functions of real independent variables
– 1D: f=f(x)
– 2D: f=f(x,y) x,y
– Real world signals (audio, ECG, images)

2. Real valued functions of discrete variables
– 1D: f=f[k]
– 2D: f=f[i,j]
– Sampled signals

3. Discrete functions of discrete variables
– 1D: y=y[k]
– 2D: y=y[i,j]
– Sampled and quantized signals
– For ease of notations, we will use the same notations for 2 and 3



Images as functions

• Gray scale images: 2D functions
– Domain of the functions: set of (x,y) values for which f(x,y) is defined : 2D lattice 

[i,j] defining the pixel locations
– Set of values taken by the function : gray levels

• Digital images can be seen as functions defined over a discrete domain {i,j: 
0<i<I, 0<j<J}

– I,J: number of rows (columns) of the matrix corresponding to the image
– f=f[i,j]: gray level in position [i,j]



Example 1: δ function
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Example 2: Gaussian
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Example 3: Natural image



Example 3: Natural image



Fourier Transform

• Different formulations for the different classes of signals
– Summary table: Fourier transforms with various combinations of 

continuous/discrete time and frequency variables.
– Notations:

• CTFT: continuous time FT: t is real and f real (f=ω) (CT, CF)
• DTFT: Discrete Time FT: t is discrete (t=n), f is real (f=ω) (DT, CF)
• CTFS: CT Fourier Series (summation synthesis): t is real AND the function is periodic, f 

is discrete (f=k), (CT, DF)
• DTFS: DT Fourier Series (summation synthesis): t=n AND the function is periodic, f 

discrete (f=k), (DT, DF)
• P: periodical signals
• T: sampling period
• ωs: sampling frequency (ωs=2π/T)
• For DTFT: T=1 → ωs=2π



Continuous Time Fourier Transform 
(CTFT)

Time is a real variable (t)

Frequency is a real variable (ω)



CTFT: Concept

■ A signal can be represented as a 
weighted sum of sinusoids. 

■ Fourier Transform is a change of 
basis, where the basis functions 
consist of sins and cosines (complex 
exponentials). 

[Gonzalez Chapter 4]



Continuous Time Fourier Transform 
(CTFT)

T=1



Fourier Transform

• Cosine/sine signals are easy to define and interpret. 

• However, it turns out that the analysis and manipulation of sinusoidal 
signals is greatly simplified by dealing with related signals called complex 
exponential signals. 

• A complex number has real and imaginary parts: z  =  x+j y

• A complex exponential signal:

( )e cos sinjr r jα α α= +



CTFT

• Continuous Time Fourier Transform

• Continuous time a-periodic signal

• Both time (space) and frequency are continuous variables
– NON normalized frequency ω is used

• Fourier integral can be regarded as a Fourier series with fundamental 
frequency approaching zero

• Fourier spectra are continuous
– A signal is represented as a sum of sinusoids (or exponentials) of all 

frequencies over a continuous frequency interval
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Then CTFT becomes

■ Fourier Transform of a 1D continuous signal
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■ Inverse Fourier Transform

2( ) ( ) j uxf x F u e duπ
∞

−∞

= ∫

( ) ( )2 cos 2 sin 2j uxe ux j uxπ π π− = −“Euler’s formula”



CTFT: change of notations

■ Fourier Transform of a 1D continuous signal
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■ Inverse Fourier Transform
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CTFT

• Replacing the variables

• More compact notations
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Sinusoids

• Frequency domain characterization of signals

Frequency domain 
(spectrum, absolute 
value of the 
transform)

Signal domain

( ) ( ) j tF f t e dtωω
+∞

−

−∞

= ∫



Gaussian

Frequency domain

Time domain
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Discrete Fourier Transform (DFT)

The easiest way to get to it

Time is a discrete variable (t=n)

Frequency is a discrete variable (f=k)



DFT

• The DFT can be considered as a generalization of the CTFT to discrete 
series

• In order to calculate the DFT we start with k=0, calculate F(0) as in the 
formula below, then we change to u=1 etc

• F[0] is the average value of the function f[n] 0
• This is also the case for the CTFT
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Example 1

time
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0

frequency
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F[0] low-pass 

characteristic



Example 2
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DFT

• About M2 multiplications are needed to calculate the DFT

• The transform F[k] has the same number of components of f[n], that is N

• The DFT always exists for signals that do not go to infinity at any point

• Using the Eulero’s formula
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Intuition

• The FT decomposed the signal over its harmonic components and thus 
represents it as a sum of linearly independent complex exponential 
functions

• Thus, it can be interpreted as a “mathematical prism”



DFT is a complex number

• F[k] in general are complex numbers
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Example



Let’s take a bit more advanced 
perspective…

Book: Lathi, Signal Processing and Linear Systems



Overview
Transform Time Frequency Analysis/Synthesis Duality

(Continuous Time) 
Fourier Transform 
(CTFT)

C C Self-dual

(Continuous Time) 
Fourier Series (CTFS)

C

P

D Dual with 
DTFT

Discrete Time Fourier 
Transform (DTFT)

D C

P

Dual with 
CTFS

Discrete Time Fourier 
Series (DTFS)

D
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Linking continuous and discrete domains

• DT signals can be seen as sampled versions of CT signals

• Both CT and DT signals can be of finite duration or periodic

• There is a duality between periodicity and discretization
– Periodic signals have discrete frequency (DF) transform (f=k) → CTFS
– Discrete time signals have periodic transform → DTFT
– DT periodic signals have DF periodic transforms → DTFS, DFT
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Dualities

FOURIER DOMAINSIGNAL DOMAIN

Sampling

Periodicity

Periodicity

Sampling

DTFT

CTFS

Sampling+Periodicity Sampling +PeriodicityDTFS/DFT



Discrete time signals
Sequences of samples

• f[k]: sample values

• Assumes a unitary spacing among 
samples (Ts=1)

• Normalized frequency Ω

• Transform
– DTFT for NON periodic sequences
– CTFS for periodic sequences
– DFT for periodized sequences

• All transforms are 2π periodic

Sampled signals

• f(kTs): sample values

• The sampling interval (or period) is Ts

• Non normalized frequency ω

• Transform
– DTFT
– CSTF
– DFT
– BUT accounting for the fact that the 

sequence values have been generated 
by sampling a real signal → fk=f(kTs)

• All transforms are periodic with period 
ωs
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Connection DTFT-CTFT
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CTFS

• Continuous Time Fourier Series

• Continuous time periodic signals
– The signal is periodic with period T
– The transform is “sampled” (it is a series)
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CTFS

• Representation of a continuous time signal as a sum of orthogonal 
components in a complete orthogonal signal space

– The exponentials are the basis functions

• Properties
– even symmetry → only cosinusoidal components
– odd symmetry → only sinusoidal components



DTFT

• Discrete Time Fourier Transform

• Discrete time a-periodic signal 

• The transform is periodic and continuous with period
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DTFT with normalized frequency

• Normalized frequency: change of variables
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DTFT with normalized frequency

• F(Ω) can be obtained from Fc(ω) by replacing ω with Ω /Ts. 

• Thus F(Ω) is identical to F(ω) frequency scaled and stratched by a factor 
1/Ts, where Ts is the sampling interval in time domain

• Notations
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DTFT with unitary frequency
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This could give a better intuition of the 
transform properties.



Summary

• Sampled signals are sequences of sampels

• Looking at the sequence as to a set of samples obtained by sampling a real 
signal with sampling frequency ωs we can still use the formulas for 
calculating the transforms as derived for the sequences by 

– Stratching the time axis (and thus squeezing the frequency axis if Ts>1)

– Enclosing the sampling interval Ts in the value of the sequence samples (DFT)
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Connection DTFT-CTFT
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Differences DTFT-CTFT

• The DTFT is periodic with period Ωs=2π (or ωs=2π/Ts)

• The discrete-time exponential ejΩn has a unique waveform only for values of 
Ω in a continuous interval of 2π

• Numerical computations can be conveniently performed with the Discrete 
Fourier Transform (DFT)



DTFS

• Discrete Time Fourier Series

• Discrete time periodic sequences of period N0
– Fundamental frequency 
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DTFS: Example

[Lathi, pag 621]

N0=20
Ts=1
Ωs=2π
Ω0= π/10



Discrete Fourier Transform (DFT)

• The DFT transforms N0 samples of a discrete-time  signal to the same number of 
discrete frequency samples

• The DFT and IDFT are a self-contained, one-to-one transform pair for a length-N0
discrete-time signal (that is, the DFT is not merely an approximation to the DTFT as 
discussed next)

• However, the DFT is very often used as a practical approximation to the DTFT
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DFT

n

zero padding

0 N0

k0 2π

F(Ω)

4π
2π/N0



DFT

n

zero padding

0
N0

k0 2π

F(Ω)

4π
2π/N0

Increasing the number of zeros 
augments the “resolution” of the 
transform since the samples of 
the DFT gets “closer”



Properties
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Discrete Cosine Transform (DCT)

• Operate on finite discrete sequences (as DFT)

• A discrete cosine transform (DCT) expresses a sequence of finitely many 
data points in terms of a sum of cosine functions oscillating at different 
frequencies

• DCT is a Fourier-related transform similar to the DFT but using only real 
numbers

• DCT is equivalent to DFT of roughly twice the length, operating on real data 
with even symmetry (since the Fourier transform of a real and even function 
is real and even), where in some variants the input and/or output data are 
shifted by half a sample 

• There are eight standard DCT variants, out of which four are common

• Strong connection with the Karunen-Loeven transform
– VERY important for signal compression 



DCT

• DCT implies different boundary conditions than the DFT or other related 
transforms 

• A DCT, like a cosine transform, implies an even periodic extension of the 
original function 

• Tricky part
– First, one has to specify whether the function is even or odd at both the left and 

right boundaries of the domain 
– Second, one has to specify around what point the function is even or odd

• In particular, consider a sequence abcd of four equally spaced data points, and say that 
we specify an even left boundary. There are two sensible possibilities: either the data is 
even about the sample a, in which case the even extension is dcbabcd, or the data is 
even about the point halfway between a and the previous point, in which case the even 
extension is dcbaabcd (a is repeated). 



Symmetries



DCT
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• Warning: the normalization factor in front of these transform definitions is merely a 
convention and differs between treatments.

– Some authors multiply the transforms by (2/N0)1/2 so that the inverse does not require any 
additional multiplicative factor.

• Combined with appropriate factors of √2 (see above), this can be used to make the transform matrix 
orthogonal. 



Images vs Signals

1D

• Signals

• Frequency
– Temporal
– Spatial

• Time (space) frequency 
characterization of signals

• Reference space for
– Filtering
– Changing the sampling rate
– Signal analysis
– ….

2D

• Images 

• Frequency
– Spatial

• Space/frequency characterization of 
2D signals

• Reference space for
– Filtering
– Up/Down sampling
– Image analysis
– Feature extraction
– Compression
– ….



2D spatial frequencies

• 2D spatial frequencies characterize the image spatial changes in the 
horizontal (x) and vertical (y) directions

– Smooth variations -> low frequencies
– Sharp variations -> high frequencies
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2D Frequency domain

ωx

ωy

Large vertical 
frequencies correspond 
to horizontal lines

Large horizontal 
frequencies correspond 
to vertical lines

Small horizontal and 
vertical frequencies 
correspond smooth 
grayscale changes in 
both directions

Large horizontal and 
vertical frequencies 
correspond sharp 
grayscale changes in 
both directions



Vertical grating
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Double grating
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Smooth rings
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2D box
2D sinc



Margherita Hack

log amplitude of the spectrum



Einstein

log amplitude of the spectrum



What we are going to analyze

• 2D Fourier Transform of continuous signals (2D-CTFT)

• 2D Fourier Transform of discrete space signals (2D-DTFT)

• 2D Discrete Fourier Transform (2D-DFT)
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2D Continuous Fourier Transform

• Continuous case (x and y are real) – 2D-CTFT (notation 1)
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2D Continuous Fourier Transform

• Continuous case (x and y are real) – 2D-CTFT
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2D Continuous Fourier Transform

• 2D Continuous Fourier Transform (notation 2)
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2D Discrete Fourier Transform
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[Lathi’s notations]



Delta

• Sampling property of the 2D-delta function (Dirac’s delta)

• Transform of the delta function

0 0 0 0( , ) ( , ) ( , )x x y y f x y dxdy f x yδ
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Constant functions

• Inverse transform of the impulse function

• Fourier Transform of the constant (=1 for all x and y)
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Trigonometric functions

• Cosine function oscillating along the x axis
– Constant along the y axis
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Vertical grating
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Properties

■ Linearity

■ Shifting

■ Modulation

■ Convolution

■ Multiplication

■ Separability

( , ) ( , ) ( , ) ( , )af x y bg x y aF u v bG u v+ ⇔ +

( , )* ( , ) ( , ) ( , )f x y g x y F u v G u v⇔
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( , ) ( ) ( ) ( , ) ( ) ( )f x y f x f y F u v F u F v= ⇔ =

0 02 ( )
0 0( , ) ( , )j ux vyf x x y x e F u vπ− +− − ⇔

0 02 ( )
0 0( , ) ( , )j u x v ye f x y F u u v vπ + ⇔ − −



Separability

1. Separability of the 2D Fourier transform
– 2D Fourier Transforms can be implemented as a sequence of 1D Fourier 

Transform operations performed independently along the two axis 
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Separability

• Separable functions can be written as 

2. The FT of a separable function is the product of the FTs of the two functions
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• Fourier Transform of a 2D a-periodic signal defined over a 2D discrete grid
– The grid can be thought of as a 2D brush used for sampling the continuous 

signal with a given spatial resolution (Tx,Ty)

2D Fourier Transform of a Discrete function 
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Unitary frequency notations
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• The integration interval for the inverse transform has width=1 instead of 2π
– It is quite common to choose
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Properties

• Periodicity: 2D Fourier Transform of a discrete a-periodic signal is periodic
– The period is 1 for the unitary frequency notations and 2π for normalized 

frequency notations. 
– Proof (referring to the firsts case)
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Properties

• Linearity

• shifting

• modulation

• convolution

• multiplication

• separability

• energy conservation properties also exist for the 2D Fourier Transform of 
discrete signals.

• NOTE: in what follows, (k1,k2) is replaced by (m,n)



2D DTFT Properties

■ Linearity

■ Shifting

■ Modulation

■ Convolution

■ Multiplication

■ Separable functions

■ Energy conservation
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Impulse Train

■ Define a comb function (impulse train) as follows

, [ , ] [ , ]M N
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∞ ∞
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where M and N are integers
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Appendix



2D-DTFT: delta

■ Define Kronecker delta function

■ DT Fourier Transform of the Kronecker delta function

1,   for 0 and 0
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2D DT Fourier Transform: constant

■ Fourier Transform of 1

To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that 
the Fourier Transform has to be periodic with period 1. 
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