2D Discrete Fourier Transform (DFT)

Outline

- Circular and linear convolutions
- 2D DFT
- 2D DCT
- Properties
- Other formulations
- Examples

In words

- Given 2 sequences of length N and M, let $y[k]$ be their linear convolution

$$
y[k]=f[k] * h[k]=\sum_{n=-\infty}^{+\infty} f[n] h[k-n]
$$

- $y[k]$ is also equal to the circular convolution of the two suitably zero padded sequences making them consist of the same number of samples

$$
\begin{aligned}
& C[k]=f[k] \otimes h[k]=\sum_{n=0}^{N_{0}-1} f[n] h[k-n] \\
& N_{0}=N_{f}+N_{h}-1: \text { length of the zero-padded seq }
\end{aligned}
$$

- In this way, the linear convolution between two sequences having a different length (filtering) can be computed by the DFT (which rests on the circular convolution)
- The procedure is the following
- Pad $f[n]$ with $N_{h}-1$ zeros and $h[n]$ with $N_{f}-1$ zeros
- Find $\mathrm{Y}[r]$ as the product of $\mathrm{F}[r]$ and $\mathrm{H}[r]$ (which are the DFTs of the corresponding zero-padded signals)
- Find the inverse DFT of $\mathrm{Y}[\mathrm{r}]$
- Allows to perform linear filtering using DFT

2D Discrete Fourier Transform

- Fourier transform of a 2D signal defined over a discrete finite 2D grid of size $M x N$
or equivalently
- Fourier transform of a 2D set of samples forming a bidimensional sequence
- As in the 1D case, 2D-DFT, though a self-consistent transform, can be considered as a mean of calculating the transform of a 2 D sampled signal defined over a discrete grid.
- The signal is periodized along both dimensions and the 2D-DFT can be regarded as a sampled version of the 2D DTFT

2D Discrete Fourier Transform (2D DFT)

- 2D Fourier (discrete time) Transform (DTFT) [Gonzalez]

$$
F(u, v)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)} \quad \begin{aligned}
& \begin{array}{l}
\text { a-periodic signal } \\
\text { periodic transform }
\end{array}
\end{aligned}
$$

- 2D Discrete Fourier Transform (DFT)

$$
F[k, l]=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

periodized signal periodic and sampled transform

2D DFT can be regarded as a sampled version of 2D DTFT.

2D DFT: Periodicity

- A $[\mathrm{M}, \mathrm{N}]$ point DFT is periodic with period $[\mathrm{M}, \mathrm{N}]$
- Proof

$$
\begin{aligned}
& F[k, l]=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
& \begin{aligned}
F[k+M, l+N] & =\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k+M}{M} m+\frac{l+N}{N} n\right)} \\
& \left.=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} e^{-j 2 \pi\left(\frac{M}{l} / m+\frac{N}{N} n\right.}\right) \\
& =F[k, l]
\end{aligned}
\end{aligned}
$$

(In what follows: spatial coordinates=k,l, frequency coordinates: u,v)

2D DFT: Periodicity

- Periodicity

$$
\begin{aligned}
& F[u, v]=F[u+m M, v]=F[u, v+n N]=F[u+m M, v+n N] \\
& f[k, l]=f[k+m M, l]=f[k, l+n N]=f[k+m M, l+n N]
\end{aligned}
$$

- This has important consequences on the implementation and energy compaction property
- 1D
$F[N-u]=F^{*}[u]$
$\mathrm{f}[\mathrm{k}]$ real $\rightarrow \mathrm{F}[\mathrm{u}]$ is symmetric $\mathrm{M} / 2$ samples are enough

Periodicity: 1D

$f[k] \leftrightarrow F[u]$

$f[k] \mathrm{e}^{j 2 \pi \pi_{0} k}{ }^{u_{0}} \leftrightarrow F\left[u-u_{0}\right]$
$u_{0}=\frac{M}{2} \rightarrow \mathrm{e}^{\mathrm{j} 2 \pi \frac{u_{0} k}{M}}=\mathrm{e}^{j 2 \pi \frac{M k}{2 M}}=\mathrm{e}^{\mathrm{j} \pi k}=(-1)^{k}$
$(-1)^{k} f[k] \leftrightarrow F\left[u-\frac{M}{2}\right]$
changing the sign of every other sample of the DFT puts F[0] at the center of the interval [0,M]

It is more practical to have one complete period positioned in [0, M-1]

Periodicity

I 4 semiperiodi si incontrano ai vertici
I 4 semiperiodi si incontrano al centro

Periodicity

Periodicity: 2D

$$
\begin{gathered}
\text { F[u,v] } \\
f[k, l] \mathrm{e}^{j 2 \pi\left(\frac{u_{0} k}{M}+\frac{v_{0} l}{N}\right)} \\
u_{0}=\frac{M}{2}, v_{0}=\frac{N}{2} \rightarrow F\left[u-u_{0}, v-v_{0}\right] \\
(-1)^{k+l} f[k] \leftrightarrow F\left[u-\frac{M}{2}, v-\frac{N}{2}\right]^{\mathrm{N} / 2}
\end{gathered}
$$

N-1
data contain one centered complete period
\qquad

\square	DFT periods
\square	MxN values

Periodicity: 2D

Periodicity in spatial domain

- [M,N] point inverse DFT is periodic with period $[\mathrm{M}, \mathrm{N}]$

$$
\begin{aligned}
& f[m, n]=\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
& \begin{aligned}
f[m+M, n+N] & =\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M}(m+M)+\frac{l}{N}(n+N)\right)} \\
& =\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} e^{j 2 \pi\left(\frac{k}{M} /\left(1+\frac{l}{N} N\right)\right.} \\
& =f[m, n]
\end{aligned}
\end{aligned}
$$

Angle and phase spectra

$F[u, v]=|F[u, v]| e^{j \Phi[u, v]}$
$|F[u, v]|=\left[\operatorname{Re}\{F[u, v]\}^{2}+\operatorname{Im}\{F[u, v]\}^{2}\right]^{1 / 2}$
modulus (amplitude spectrum)
$\Phi[u, v]=\arctan \left[\frac{\operatorname{Im}\{F[u, v]\}}{\operatorname{Re}\{F[u, v]\}}\right]$
phase
power spectrum
$P[u, v]=\mid F[u, v]^{2}$
For a real function
$F[-u,-v]=F^{*}[u, v]$
conjugate symmetric with respect to the origin
$|F[-u,-v]|=|F[u, v]|$
$\Phi[-u,-v]=-\Phi[u, v]$

Translation and rotation

$f[k, l] e^{j 2 \pi\left(\frac{m}{M} k+\frac{n}{N} l\right)} \leftrightarrow F[u-m, v-l]$
$f[k-m, l-n] \leftrightarrow F[u, v]^{-j 2 \pi\left(\frac{m}{M} k+\frac{n}{N} l\right)}$
$\left\{\begin{array}{l}k=r \cos \vartheta \\ l=r \sin \vartheta\end{array} \quad\left\{\begin{array}{l}u=\omega \cos \varphi \\ l=\omega \sin \varphi\end{array}\right.\right.$
$f\left[r, \vartheta+\vartheta_{0}\right] \leftrightarrow F\left[\omega, \varphi+\vartheta_{0}\right]$

Rotations in spatial domain correspond equal rotations in Fourier domain

mean value

$$
F[0,0]=\frac{1}{N M} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m]
$$

DC coefficient

Separability

- The discrete two-dimensional Fourier transform of an image array is defined in series form as

$$
F[k, l]=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

- inverse transform

$$
f[m, n]=\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

- Because the transform kernels are separable and symmetric, the two dimensional transforms can be computed as sequential row and column one-dimensional transforms.
- The basis functions of the transform are complex exponentials that may be decomposed into sine and cosine components.

2D DFT: summary

TABLE 4.1

Summary of some important properties of the 2-D Fourier transform.

Property

Fourier transform $\quad F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u x / M+v y / N)}$
Inverse Fourier
transform
Polar
representation
Spectrum
$|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}, \quad R=\operatorname{Real}(F)$ and $I=\operatorname{Imag}(F)$
Phase angle $\quad \phi(u, v)=\tan ^{-1}\left[\frac{I(u, v)}{R(u, v)}\right]$
Power spectrum $\quad P(u, v)=|F(u, v)|^{2}$
Average value $\quad \bar{f}(x, y)=F(0,0)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$
Translation $\quad f(x, y) e^{j 2 \pi\left(u_{0} x / M+v_{0} y / N\right)} \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)$
$f\left(x-x_{0}, y-y_{0}\right) \Leftrightarrow F(u, v) e^{-j 2 \pi\left(u x_{0} / M+v y_{0} / N\right)}$
When $x_{0}=u_{0}=M / 2$ and $y_{0}=v_{0}=N / 2$, then
$f(x, y)(-1)^{x+y} \Leftrightarrow F(u-M / 2, v-N / 2)$
$f(x-M / 2, y-N / 2) \Leftrightarrow F(u, v)(-1)^{u+v}$

2D DFT: summary

Conjugate symmetry	$\begin{aligned} & F(u, v)=F^{*}(-u,-v) \\ & \|F(u, v)\|=\|F(-u,-v)\| \end{aligned}$
Differentiation	$\frac{\partial^{n} f(x, y)}{\partial x^{n}} \Leftrightarrow(j u)^{n} F(u, v)$
	$(-j x)^{n} f(x, y) \Leftrightarrow \frac{\partial^{n} F(u, v)}{\partial u^{n}}$
Laplacian	$\nabla^{2} f(x, y) \Leftrightarrow-\left(u^{2}+v^{2}\right) F(u, v)$
Distributivity	$\begin{aligned} & \Im\left[f_{1}(x, y)+f_{2}(x, y)\right]=\Im\left[f_{1}(x, y)\right]+\Im\left[f_{2}(x, y)\right] \\ & \Im\left[f_{1}(x, y) \cdot f_{2}(x, y)\right] \neq \Im\left[f_{1}(x, y)\right] \cdot \Im\left[f_{2}(x, y)\right] \end{aligned}$
Scaling	$a f(x, y) \Leftrightarrow a F(u, v), f(a x, b y) \Leftrightarrow \frac{1}{\|a b\|} F(u / a, v / b)$
Rotation	$\begin{aligned} & x=r \cos \theta \quad y=r \sin \theta \quad u=\omega \cos \varphi \quad v=\omega \sin \varphi \\ & f\left(r, \theta+\theta_{0}\right) \Leftrightarrow F\left(\omega, \varphi+\theta_{0}\right) \end{aligned}$
Periodicity	$\begin{aligned} & F(u, v)=F(u+M, v)=F(u, v+N)=F(u+M, v+N) \\ & f(x, y)=f(x+M, y)=f(x, y+N)=f(x+M, y+N) \end{aligned}$
Separability	See Eqs. (4.6-14) and (4.6-15). Separability implies that we can compute the 2-D transform of an image by first computing 1-D transforms along each row of the image, and then computing a 1-D transform along each column of this intermediate result. The reverse, columns and then rows, yields the same result.

2D DFT: summary

Property	Expression(s)
Computation of the inverse	$\frac{1}{M N} f^{*}(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^{*}(u, v) e^{-j 2 \pi(u x / M+v y / N)}$
Fourier transform using a forward transform algorithm	This equation indicates that inputting the function $F^{*}(u, v)$ into an algorithm designed to compute the forward transform (right side of the preceding equation) yields $f^{*}(x, y) / M N$. Taking the complex conjugate and multiplying this result by $M N$ gives the desired inverse.
Convolution ${ }^{\text { }}$	$f(x, y) * h(x, y)=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x-m, y-n)$
Correlation ${ }^{\dagger}$	$f(x, y) \circ h(x, y)=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^{*}(m, n) h(x+m, y+n)$
Convolution theorem ${ }^{\text { }}$	$\begin{aligned} & f(x, y) * h(x, y) \Leftrightarrow F(u, v) H(u, v) \\ & f(x, y) h(x, y) \Leftrightarrow F(u, v) * H(u, v) \end{aligned}$
Correlation theorem ${ }^{\text { }}$	$\begin{aligned} & f(x, y) \circ h(x, y) \Leftrightarrow F^{*}(u, v) H(u, v) ; \\ & f^{*}(x, y) h(x, y) \Leftrightarrow F(u, v) \circ H(u, v) \end{aligned}$

2D DFT: summary

$$
\begin{aligned}
& \text { Some useful FT pairs: } \\
& \begin{array}{ll}
\text { Impulse } & \delta(x, y) \Leftrightarrow 1 \\
\text { Gaussian } & A \sqrt{2 \pi} \sigma e^{-2 \pi^{2} \sigma^{2}\left(x^{2}+y^{2}\right)} \Leftrightarrow A e^{-\left(u^{2}+v^{2}\right) / 2 \sigma^{2}} \\
\text { Rectangle } & \operatorname{rect}[a, b] \Leftrightarrow a b \frac{\sin (\pi u a)}{(\pi u a)} \frac{\sin (\pi v b)}{(\pi v b)} e^{-j \pi(u a+v b)} \\
\text { Cosine } & \cos \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow \\
& \frac{1}{2}\left[\delta\left(u+u_{0}, v+v_{0}\right)+\delta\left(u-u_{0}, v-v_{0}\right)\right] \\
& \\
\text { Sine } & \sin \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow \\
& j \frac{1}{2}\left[\delta\left(u+u_{0}, v+v_{0}\right)-\delta\left(u-u_{0}, v-v_{0}\right)\right]
\end{array}
\end{aligned}
$$

[^0]
other formulations

2D Discrete Fourier Transform

- 2D Discrete Fourier Transform (DFT)

$$
\begin{aligned}
& F[k, l]=\frac{1}{M N} \sum_{n=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
& \text { where } \quad l=0,1, \ldots, N-1 \\
& k
\end{aligned}=0,1, \ldots, M-1 .
$$

- Inverse DFT

$$
f[m, n]=\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

2D Discrete Fourier Transform

- It is also possible to define DFT as follows

$$
\begin{aligned}
& F[k, l]=\frac{1}{\sqrt{M N}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
& \text { where } \quad k=0,1, \ldots, M-1 \\
& l=0,1, \ldots, N-1
\end{aligned}
$$

- Inverse DFT

$$
f[m, n]=\frac{1}{\sqrt{M N}} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

2D Discrete Fourier Transform

- Or, as follows

$$
\begin{aligned}
& \quad F[k, l]=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
& \text { where } k=0,1, \ldots, M-1 \text { and } l=0,1, \ldots, N-1
\end{aligned}
$$

- Inverse DFT

$$
f[m, n]=\frac{1}{M N} \sum_{l=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

2D DFT

- The discrete two-dimensional Fourier transform of an image array is defined in series form as

$$
\mathcal{H}(u, v)=\frac{1}{N} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} F(j, k) \exp \left\{\frac{-2 \pi i}{N}(u j+v k)\right\}
$$

- inverse transform

$$
F(j, k)=\frac{1}{N} \sum_{u=0}^{V-1} \sum_{v=0}^{N-1} \mathcal{F}(u, v) \exp \left\{\frac{2 \pi i}{N}(u j+v k)\right\}
$$

2D DCT

Discrete Cosine Transform

2D DCT

- based on most common form for 1D DCT

$$
\begin{array}{ll}
C(u)=\alpha(u) \sum_{x=0}^{N-1} f(x) \cos \left[\frac{\pi(2 x+1) u}{2 N}\right], & \mathrm{u}, \mathrm{x}=0,1, \ldots, \mathrm{~N}- \\
f(x)=\sum_{u=0}^{N-1} \alpha(u) C(u) \cos \left[\frac{\pi(2 x+1) u}{2 N}\right], & \text { "mean" value } \\
\alpha(u)= \begin{cases}\sqrt{\frac{1}{N}} & \text { for } \quad u=0 \\
\sqrt{\frac{2}{N}} & \text { for } \quad u \neq 0 .\end{cases} \\
C(u=0)=\sqrt{\frac{1}{N}} \sum_{x=0}^{N-1} f(x) . &
\end{array}
$$

1D basis functions

Figure 1

Cosine basis functions are orthogonal

2D DCT

- Corresponding 2D formulation
direct $\quad C(u, v)=\alpha(u) \alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \cos \left[\frac{\pi(2 x+1) u}{2 N}\right] \cos \left[\frac{\pi(2 y+1) v}{2 N}\right]$,

$$
u, v=0,1, \ldots ., N-1
$$

$$
\alpha(u)=\left\{\begin{array}{lll}
\sqrt{\frac{1}{N}} & \text { for } & u=0 \\
\sqrt{\frac{2}{N}} & \text { for } & u \neq 0
\end{array}\right.
$$

inverse $f(x, y)=\sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u) \alpha(v) C(u, v) \cos \left[\frac{\pi(2 x+1) u}{2 N}\right] \cos \left[\frac{\pi(2 y+1) v}{2 N}\right]$,

2D basis functions

- The 2-D basis functions can be generated by multiplying the horizontally oriented 1-D basis functions (shown in Figure 1) with vertically oriented set of the same functions.
- The basis functions for $N=8$ are shown in Figure 2.
- The basis functions exhibit a progressive increase in frequency both in the vertical and horizontal direction.
- The top left basis function assumes a constant value and is referred to as the DC coefficient.

2D DCT basis functions

Figure 2

Separability

The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the corresponding one-dimensional DCT , e.g. the one-dimensional inverses applied along one dimension at a time

Block-based implementation
 Basis function

Block-based transform
Block size
$\mathrm{N}=\mathrm{M}=8$

The source data (8x8) is transformed to a linear combination of these 64 frequency squares.

Energy compaction

(a)

(b)

(d)

(e)

Appendix

- Eulero's formula

$$
\begin{aligned}
& A(j, k ; u, v)=\exp \left\{\frac{-2 \pi i}{N}(u j+v k)\right\}=\cos \left\{\frac{2 \pi}{N}(u j+v k)\right\}-i \sin \left\{\frac{2 \pi}{N}(u j+v k)\right\} \\
& B(j, k ; u, v)=\exp \left\{\frac{2 \pi i}{N}(u j+v k)\right\}=\cos \left\{\frac{2 \pi}{N}(u j+v k)\right\}+i \sin \left\{\frac{2 \pi}{N}(u j+v k)\right\}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Assumes that functions have been extended by zero padding.

