

 April 11th 2017
Dipartimento di Informatica

Software Engineering and Security

• SOFTWARE ENGINEERING and ANALYSIS
Study and design of methodologies that support the
development and maintenance of complex software systems

• SECURITY AND PRIVACY
• malware (e.g., virus, trojans, backdoors…)
• disclosure of sensitive data in the internet
• network security (protocols)
• web security (code injection, cross site scripting)
• intellectual property protection (software piracy)
• software integrity
• …

2

3

Security
SW Protection and

Malware

SW Protection

4

Untrusted
Host

P1

P2

P4

P3

MATE
attack

The Value of SW Protection

5

Tamper
Detection

Tamper
Resistance

Hide algoritms
and computations

Hide internal
data

Protect the
intellectual
property Identify

piracy

Hide
proprietary
information

SOFTWARE

…
…

…

SW Protection Techniques

6

Tamper
Detection

Tamper
Resistance

Hide algoritms
and computations

Hide internal
data

Protect the
intellectual
property Identify

piracy

Hide
proprietary
information

SOFTWARE

…
…

…

Tamper-p
roofing Code Obfuscation

SW Watermarking

SW Protection Techniques

7

Tamper
Detection

Tamper
Resistance

Hide algoritms
and computations

Hide internal
data

Protect the
intellectual
property Identify

piracy

Hide
proprietary
information

SOFTWARE

…
…

…

Tamper-p
roofing Code Obfuscation

SW Watermarking

General
Semantics-

based
framework

General Semantics-
based framework

TODO

Malware & Malware Variants

8

2

4

6

8

10

12

14

16

20152014201320122011

567

4,350

7,612

9,839

13,783

TH
O

U
SA

N
D

50

100

150

200

250

300

350

20152014201320122011

71

174

231

277
295

Cumulative Android Mobile Malware

the number of Android malware families
added in 2015 grew by 6%, compared with

the 20% growth in 2014

Cumulative Android Mobile Variants

the number of Android malware variants
added in 2015 grew by 40%, compared with

the 29% growth in 2014

[Symantec 2016]

Similarity Analysis

9

clone detection
software forensics
plagiarism detection
tamper detection
software birth-marking
malware detection
vulnerability detection

Plagiarism detection

Make pair-wise comparisons between all the programs handed
in by the students:

P2

P1

P3

⟨P1, P2⟩ = 70%
⟨P1, P3⟩ = 20%
⟨P2, P3⟩ = 10%

9 / 49

Malware

P2

P3

P1

Malware

>50%

<50%

False negative

ssEFM: AST-based clone detection

Look for clones in this program:
✞ ☎

(5 + (a + b)) * (7 + (c + 9))
✝ ✆

Parse and build an AST S :

+
int +

+
+

var var var int

*

5
a b c

7
9

int

13 / 49

13

5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Mostly syntactic
in nature

(AST, PDF and CFG)

Semantic Similarity

10

In order to identify malware variants, plagiarized code, tampered
code and vulnerabilities in different application, we need to

extract semantic models!

Develop a semantics-based
similarity analysis!

Similarity Analysis

11

Introduction
R.E.H.A.
Results

Behaviors
Models
Loss of Precision
Behavior Extraction

R.E.H.A. - General Workflow

Niccolò Marastoni R.E.H.A.

Similarity Analysis

12

Introduction
R.E.H.A.
Results

Behaviors
Models
Loss of Precision
Behavior Extraction

Family Analysis Workflow

Niccolò Marastoni R.E.H.A.

13

Analysis

14

• Static analysis for the detection of race condition on
Concurrent Java programs.

• Verification and inference of locking policies (@GuardedBy
and @Holding annotations) and relative formal semantics

• Verification and inference of thread-confinement properties
(@UiThreda and @WorkerThread annotations)

Analysis of Concurrent SW

Race Condition

15

Hyperproperty Verification
Verifying hyperproperties

Hyperproperty:
Property that can be verified on sets of execution instead of on single executions.

4.1 Trace properties verification by standard analysis

Usually, a trace property is modeled as the set of all executions satisfying it.
Hence, let P ✓ D be such a property, then we say that a system S satisfies P,
denoted as S |= P, i↵ S ✓ P. Hence, by definition, P is fulfilled for a system
S i↵ P is fulfilled for each one of its executions, i.e., S |= P i↵ 8d 2 S . d 2 P.
This is quite useful because in order to disprove that a system fulfills a trace
property we just need one counterexample. We denote with TRC

P the set of all
trace properties, i.e., }(D).

In order to cope with the potential non decidability of trace properties
verification, approximation of systems’ semantics is necessary. In the standard
framework of abstract interpretation [13, 14] we can compute a sound over-
approximation O ◆ S of a system’s semantics allowing sound verification of
trace properties (Fig. 1). This is obtained by mean of an abstract domain linked
through a Galois connection with the concrete one, where the abstract semantics
plays the role af the over-approximation. Let S be a system, Â ✓ }(D) be an ab-
stract domain, P ✓ D be a trace property and S] be an abstract interpretation
of S in Â, i.e., S ✓ �̂(S]) is an over-approximation of S, then:

h}(D),✓i ���! ���
↵̂

�̂ hÂ,4i and �̂(S]) ✓ P imply S |= P (1)

a

S

✓
P

(

b

O ◆ S

✓
P

Fig. 1. Over-approximation of trace properties.

Unfortunately, with the above notion of property we cannot express all the
possible verification problems over systems, for instance information flow prob-
lems. The key point is that with the restriction to analyze only one trace, we
cannot express relations between di↵erent executions. In order to overcome this
limitation we need a more expressive definition of systems’ properties.

4.2 Hyperproperties verification by standard analysis

As introduced in Sect. 2, hyperproperties are sets of sets of executions, hence
the domain of hyperproperties is }(}(D)). We denote with GEN

H the set of all
(generic) hyperproperties, i.e., }(}(D)). Similarly to what happens for trace
properties, we say that a system S satisfies an hyperproperty Hp, denoted as
S |= Hp i↵ S 2 Hp or, equivalently, {S} ✓ Hp. This in particular, means that the

a

2

S

Hp

()

b

✓

{S}

Hp

c
*��

2

O ◆ S

Hp

()

d
*

✓

O ◆ {S}

Hp

Fig. 2. Over-approximation of hyperproperties.

strongest hyperproperty of a system S is {S} [12], since every hyperproperty of
S is implied by, i.e., include, {S}.

At this point, we wonder whether we can use standard analysis for verifying
also hyperproperties. Unfortunately, over-approximations in this case do not
work properly, since O ◆ S ^O 2 Hp 6) S 2 Hp (Fig. 2 on the left). Hence, in
order to verify hyperproperties by standard analysis we can try to restrict the
notion of hyperproperty.

Definition 1 (Trace hyperproperty). tHp 2 }(}(D)) is called trace hyper-

property if tHp = }(
S

tHp), i.e., if htHp,✓,[,\,?,
S

tHpi is a boolean algebra.

We denote with TRC

H the set of all trace hyperproperties, i.e., TRCH is the set
{tHp 2 }(}(D)) | }(S tHp) = tHp}. We can show that trace hyperproperties can
be verified in the standard analysis framework based on abstract interpretation.

Proposition 1. Let S be a system, Â ✓ }(D) be an abstract domain, tHp ✓
}(D) be a trace hyperproperty and S] be an abstract interpretation of S in Â,

i.e., S ✓ �̂(S]) is an over-approximation of S, then:

h}(D),✓i ���! ���
↵̂

�̂ hÂ,4i and �̂(S]) ✓
[

tHp imply S |= tHp (2)

Proof. By definition, being tHp a trace hyperproperty, we have that 8X ✓ S
tHp

then X 2 tHp. Now, since we have S ✓ �̂(S]) ✓ S
tHp, then S 2 tHp. ut

Hence, when dealing with trace hyperproperties we can still use standard
analysis based on over-approximation for verifying trace hyperproperties. In re-
ality, with standard analysis we can do a bit more. In fact, also subset-closed
hyperproperties, i.e., those such that X 2 Hp) (8Y ✓ X .Y 2 Hp), can be ver-
ified, technically, with an over-approximation of the semantics. We denote with
SSC

H the set of all subset-closed hyperproperties, i.e., {cHp 2 }(}(D)) | X 2
cHp) (8Y ✓ X .Y 2 cHp)}. Note that all trace hyperproperties are subset-
closed but there are some subset-closed hyperproperties which are not trace

verifying properties

verifying

hyperproperties
verifying

hyperproperties

16

Hyperproperty Verification
Verifying hyperproperties

Hyperproperty:
Property that can be verified on sets of execution instead of on single executions.

a

S

✓
P

(

b

O ◆ S

✓
P

a

2

S

Hp

()

b

✓

{S}

Hp

c
*��

2

O ◆ S

Hp

()

d
*

✓

O ◆ {S}

Hp

verifying properties

verifying

hyperproperties
verifying

hyperproperties

a

2

S

Hp

()

b

✓

{S}

Hp

c
*��

2

O ◆ S

Hp

()

d
*

✓

O ◆ {S}

Hp

Fig. 2. Over-approximation of hyperproperties.

strongest hyperproperty of a system S is {S} [12], since every hyperproperty of
S is implied by, i.e., include, {S}.

At this point, we wonder whether we can use standard analysis for verifying
also hyperproperties. Unfortunately, over-approximations in this case do not
work properly, since O ◆ S ^O 2 Hp 6) S 2 Hp (Fig. 2 on the left). Hence, in
order to verify hyperproperties by standard analysis we can try to restrict the
notion of hyperproperty.

Definition 1 (Trace hyperproperty). tHp 2 }(}(D)) is called trace hyper-

property if tHp = }(
S

tHp), i.e., if htHp,✓,[,\,?,
S

tHpi is a boolean algebra.

We denote with TRC

H the set of all trace hyperproperties, i.e., TRCH is the set
{tHp 2 }(}(D)) | }(S tHp) = tHp}. We can show that trace hyperproperties can
be verified in the standard analysis framework based on abstract interpretation.

Proposition 1. Let S be a system, Â ✓ }(D) be an abstract domain, tHp ✓
}(D) be a trace hyperproperty and S] be an abstract interpretation of S in Â,

i.e., S ✓ �̂(S]) is an over-approximation of S, then:

h}(D),✓i ���! ���
↵̂

�̂ hÂ,4i and �̂(S]) ✓
[

tHp imply S |= tHp (2)

Proof. By definition, being tHp a trace hyperproperty, we have that 8X ✓ S
tHp

then X 2 tHp. Now, since we have S ✓ �̂(S]) ✓ S
tHp, then S 2 tHp. ut

Hence, when dealing with trace hyperproperties we can still use standard
analysis based on over-approximation for verifying trace hyperproperties. In re-
ality, with standard analysis we can do a bit more. In fact, also subset-closed
hyperproperties, i.e., those such that X 2 Hp) (8Y ✓ X .Y 2 Hp), can be ver-
ified, technically, with an over-approximation of the semantics. We denote with
SSC

H the set of all subset-closed hyperproperties, i.e., {cHp 2 }(}(D)) | X 2
cHp) (8Y ✓ X .Y 2 cHp)}. Note that all trace hyperproperties are subset-
closed but there are some subset-closed hyperproperties which are not trace

Chara
cte

riz
e a

 fr
am

ework
 fo

r

verif
yin

g h
yperp

ro
perti

es

SQL injectionChasing SQL injections

Sta�c
Analysis

Untrusted
Inputs

Execu�on
Points

Request
for Contracts

Execu�on MonitorProgammer

Secured
Web App

Figure 1: Defense mechanism conceptual framework.

Definition 1 (Soundness w.r.t. ⇧). Given a contract �, specifying safe un-
trusted input, and a set ⇧ of safe output behaviour, characterized by ⇢

⇧

, then �
is sound w.r.t. ⇧ if 8�. ⇢

�

(JExec(⌧(x))K = true) ⇢
⇧

(JExec(⌧(x))K = true.

Hence, any contract � characterizes safe behaviours w.r.t. ⇢
�

, while it may lose
precision w.r.t. more general characterization of acceptable behaviours. Con-
tracts will model �, while the monitor is the implementation of ⇢

�

.

4 KArMA: A Knowledge-Aided Monitoring Approach

In this section, we propose a dynamic monitor able to check, and if necessary
stop, the execution of an application potentially under a SQLIA. We develop
two main ideas: first, we model the programmer expected structure of untrusted
inputs by contracts; second, we combine a static analysis automatically providing
when, during the execution, these contracts should be verified, with a monitor
able to stop the computation before executing a query containing any untrusted
input which do not meet the programmer intended structure. Contracts consist
in a formal specification of which untrusted input (interfering with an execution)
should be accepted for preventing SQLIA. In particular, this is required for each
path leading from an untrusted input to the execution of a query. The approach
we proposed is composed by three phases depicted in Fig. 1:

• Static analysis: The code is statically analyzed in order to extract the vul-
nerable executions, where some untrusted input interferes with an execution,
and therefore where to the programmer should fix some restrictions;

• Contracts request: The static phase requires the programmer interaction
only when potentially necessary. The contract request is an interactive phase,
which could be made automatic by providing a general definition of restric-
tions. The result of this phase is an annotated program with contracts;

• Monitor: Finally, the monitor is able to kill the execution of an annotated
program, when an untrusted input violating contracts interferes with an ex-
ecuted query. In other words, the result of this phase is a monitored program
which can be seen as the monitor specialized on the annotated program.

4.1 Static phase: Analysis and contracts

In the first phase, the analysis aims at detecting any potential interference be-
tween an untrusted input and a query that can be executed. For instance, in
Fig. 2(a) we should detect the potential interference between the input s1 and

submit

query = “SELECT Username, UserID, Password
 FROM Users WHERE
 Username = ‘bob’; DROP Users--
 �AND Password = ‘ ’ ”

submit

query = “SELECT Username, UserID, Password
 FROM Users WHERE
 Username = ‘bob’; DROP Users--
 �AND Password = ‘ ’ ”

SQL injection example

Our idea for releasing
secured applications

Static Analysis of Dynamic Code

18

// Retrive th ID for a camera
int cameraId = …;

// Create an obfuscated string
//containing the method call
String obfuscated = “AoApBeBnBA”;
String deobfuscated = obfuscated.replaceAll(“[AB]”,””);

Class<?> klass = Class.forName(
“android.hardware.Camera”

);

// Retrive and invoke the method
Method method = klass.getMethod(

deobfuscated,
Integer.class

);

Camera camera = (Camera) method.invoke(cameraId);

x:= …
…
manipulation of x
…
Eval (x)

JavaScript

19

Thanks

