Giacomo Canevari

foto,  May 13, 2019
Position
Associate Professor
Academic sector
MATH-03/A - Mathematical Analysis
Research sector (ERC-2024)
PE1_8 - Analysis

PE1_11 - Theoretical aspects of partial differential equations

Research sector (ERC)
PE1_8 - Analysis

PE1_11 - Theoretical aspects of partial differential equations

Telephone
+39 045 802 7979
E-mail
giacomo|canevari*univr|it <== Replace | with . and * with @ to have the right email address.

Office Hours

Thursday, Hours 11:45 AM - 1:30 PM,  

Ricevimento il giovedì, dalle 11.45 alle 13.30, oppure su appuntamento. Il mio ufficio è in Ca' Vignal 2, secondo piano, stanza 2.17.

Curriculum

I am a researcher in the Calculus of Variations and Partial Differential Equations, specialising in the analysis of models from Materials Science. I have been working mostly on problems related - directly or indirectly - to the mathematical modelling of liquid crystals. 

Modules

Modules running in the period selected: 27.
Click on the module to see the timetable and course details.

Course Name Total credits Online Teacher credits Modules offered by this teacher
Bachelor's degree in Applied Mathematics Dynamical Systems (2024/2025)   9  eLearning (Teoria)
Bachelor's degree in Bioinformatics Linear algebra and analysis [Matricole dispari] (2024/2025)   12  eLearning ANALISI MATEMATICA
Bachelor's degree in Applied Mathematics Mathematical analysis 1 (2024/2025)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 2 (2024/2025)   12  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2024/2025)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2023/2024)   9  eLearning (Teoria 1)
(Esercitazioni di teoria 1)
(Teoria 2)
Bachelor's degree in Bioinformatics Mathematical analysis [Matricole dispari] (2023/2024)   6  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2023/2024)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2022/2023)   9  eLearning (Esercitazioni di teoria 1)
(Teoria 2)
(Teoria 1)
Bachelor's degree in Bioinformatics Mathematical analysis [Matricole dispari] (2022/2023)   6  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2022/2023)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2021/2022)   9  eLearning (Teoria parte I)
(Esercitazioni parte II)
(Teoria parte II)
(Esercitazioni parte I)
Bachelor's degree in Bioinformatics Mathematical analysis [Matricole dispari] (2021/2022)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2020/2021)   9  eLearning (Parte II teoria)
(Parte I teoria)
Bachelor's degree in Applied Mathematics Dynamical Systems (2019/2020)   9  eLearning (Parte I esercitazioni)
Bachelor's degree in Bioinformatics Mathematical analysis (2019/2020)   6  eLearning
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2019/2020)   6  eLearning
Bachelor's degree in Applied Mathematics Dynamical Systems (2018/2019)   9  eLearning (Esercitazioni 2 parte II)
Bachelor's degree in Applied Mathematics Mathematical analysis 3 (2018/2019)   6  eLearning (Esercitazioni)

Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:

  • Eventi di Terza Missione: eventi di Public Engagement e Formazione Continua.
  • Insegnamenti di Terza Missione: insegnamenti che fanno parte di Corsi di Studio come Corsi di formazione continua, Corsi di perfezionamento e aggiornamento professionale, Corsi di perfezionamento, Master e Scuole di specializzazione.

Research groups

Analysis of PDE and Calculus of Variations
The research topics of this group cover calculus of variations, geometric measure theory, optimal control theory, optimal transport theory and applications.
INdAM - Research Unit at the University of Verona
We collect here the scientific activities of the Research Unit of Istituto Nazionale di Alta Matematica INdAM at the University of Verona
Research interests
Topic Description Research area
Partial differential equations of elliptic type Studying existence, regularity, and qualitative properties of solutions to second-order elliptic equations and systems of equations, possibly by variational techniques Mathematical methods and models
Elliptic equations and elliptic systems
Variational problems in a geometric measure-theoretic setting Geometric variational and evolution problems: minimal surfaces, motion by mean curvature. Optimal mass transport theory. Mathematical methods and models
Calculus of variations and optimal control; optimization



Organization

Department facilities

Share