
PARALLEL COORDINATES : VISUAL

Multidimensional Geometry and its
Applications

Alfred Inselberg(c©1992, 2004)

Senior Fellow San Diego SuperComputing Center, CA, USA

School of Mathematical Sciences
Tel Aviv University , Israel

aiisreal@post.tau.ac.il
&

Multidimensional Graphs Ltd
Raanana 43556, Israel

COPYRIGHTED MATERIAL
ACCESS AND USE BY PERMISSION ONLY

ii

Chapter 1

Multidimensional Lines

1.1 Representing Lines in R
N

T here are several point ↔ line dualities (like the very useful Hough transform) on the
plane which do not generalize well for higher dimensions. This is, of course, because in
the Projective N-space P

N the natural duality is Point ↔ Hyperplane with the Point ↔
Line being the special case for N = 2. However, in ‖-coords there is a useful and direct
generalization which is the subject of this chapter. At first the basic idea for lines in R

N ,
rather than P

N is presented in an intuitive way paving the way for the general case which is
treated subsequently (as in [8] and [9]).

1.1.1 Elementary Approach

Adjacent Variables Form

What is meant by “a line in R
N”? In R

3 a line is the intersection of two planes. So a line ` in
R

N is the intersection of N − 1 non-parallel hyperplanes. Equivalently, it is the set of points
(specified by N-tuples) which satisfy a set of N − 1 linearly independent linear equations.
After some manipulation, and with the exception of some special cases to be treated later,
the set of equations can be put in the convenient form :

` :































`1,2 : x2 = m2x1 + b2

`2,3 : x3 = m3x2 + b3

· · ·
`i−1,i : xi = mixi−1 + bi

· · ·
`N−1,N : xN = mNxN−1 + bN ,

(1.1)

that is each equation contains a pair of adjacently indexed variables. In the xi−1xi-plane
the relation labeled `i−1,i is a line, and by our point ↔ line duality which we have already
found (eq. (3) in Chapter 1) it can be represented by a point ¯̀

i−1,i . To clarify matters the
situation is illustrated with an example in R

5 shown in Fig. 1.1 with a polygonal line Ā, for
A = (a1, a2, a3, a4, a5), on each one the four points ¯̀

12, ¯̀
23, ¯̀

34, ¯̀
45 representing the 4 linear

relations in eq. (1.1) for a line ` when N = 5. The X̄1 X̄2 portion of Ā on ¯̀
12 ⇒ that (a1, a2)

1

x

X̄1

y

X̄3

a1

a5

a4

a2

a3

X̄2 X̄4 X̄5

¯̀
12 ¯̀

45

¯̀
23

¯̀
34

`12 : x2 = m2x1 + b2

A = (a1, a2, a3, a4, a5) ∈ `

Figure 1.1: Point on line in 5-D.

satisfies the `12 relation as for the duality in Chapter ??. Similarly (a2, a3), (a3, a4), (a4, a5)
satisfy the `23, `34, `45 relations respectively. Hence A ∈ ` when Ā is on all the ¯̀ points.

Unless otherwise stated from now on the distance between each pair of adjacent axes is
taken as one unit as shown in Fig. 1.2. Since the y-axis is not coincident with the X̄i−1-axis,
the x-coord of the point representing the line (see eq. (??) and Fig. ?? in Chapter ??) needs
to be translated by (i− 2). That is

¯̀
i−1,i = (

1

(1−mi)
+ (i− 2) ,

bi

(1−mi)
)

Y

X
1 1 1 1

X̄1 X̄2 X̄3 X̄i−1 X̄i X̄N−1

(i-2)

X̄N

Figure 1.2: Spacing between adjacent axes is 1 unit.

2

or in homogeneous coordinates :

¯̀
i−1,i = ((i− 2)(1−mi) + 1 , bi , 1−mi). (1.2)

There are N − 1 such points for i = 2 , . . . , N which represent the line `. This is the first
instance where the indexing arises in the representation and plays a key role in the subsequent
development. For now it suffices to observe that without the indexing the representation of
the line is ambiguous. The exact number of lines that can be represented by the same points
indexed differently is studied later in section 1.1.4. Since the display space is at a premium,
the indexing is usually not included in the picture but it must always be accessible.

We know that a polygonal line whose portions between the X̄i−1 and X̄i axes (extended if
necessary) are on the points ¯̀

i−1,i ∀ i = 2 , . . . , N , necessarily represents a point on the line
` since adjacent pairs of y-coordinates of vertices on the X̄i−1 and X̄i-axes simultaneously
satisfy Equation (1.1). Such is the case in Fig. 1.3 where several polygonal lines representing
points on an interval of a line in 10-D are shown. For example, the point of intersection
of the polygonal lines between the X̄2 and X̄3-axes, is the point ¯̀

2,3. All the nine points,
representing that 10-dimensional line, can be seen (or constructed) with their horizontal
positions depending on the first coordinate of eq. (1.2). Do not be mislead by the fact
that all of the ¯̀’s except ¯̀

1,2 and ¯̀
6,7 are in-between their corresponding axes. This is due

to the choice of mi ≤ 0 made for display convenience only. As in the x-coord of ¯̀ in the
` ↔ ¯̀ mapping of Ch. 1, and here due to the translation of x by (i− 2), the point ¯̀

i−1,i is
in-between the X̄i−1 , X̄i axes when mi < 0, to the left of X̄i−1 when mi > 1 and to the right
of X̄i when 0 < mi < 1.

X

Y

X2 X3 X4 X5 X6 X7 X8 X9 X10X1

.

Figure 1.3: Line interval in 10-D – the thicker polygonal lines represent it’s end-points. The
adjacent variables representation, consisting of nine properly indexed points, is obtained by
the sequential intersections of the polygonal lines’ linear portions. Note that ¯̀

1,2 is to the
right of the X2-axis and ¯̀

6,7 is an ideal point. The remaining points are in between the
corresponding pairs of axes.

3

Base Variable Form

Another common way of describing a line ` ⊂ R
N is in terms of one, sometimes called the

base, variable which after appropriate relabeling may be taken as x1. Then

` :































`1,2 : x2 = m1
2x1 + b1

2

`1,3 : x3 = m1
3x1 + b1

3

· · ·
`1,i : xi = m1

i x1 + b1
i

· · ·
`1,N : xN = m1

Nx1 + b1
N

, (1.3)

and the N − 1 points representing it are :

¯̀
1,i = (i− 1, b1

i , 1−m1
i) , (1.4)

With the axes placed 1 unit apart, the distance between X̄i and X̄1 (which is coincident with
the y-axis) is i − 1. This brings the point ¯̀

1,i in-between the axes X̄1, X̄i, when m1
i < 0, to

the left of X̄1 when m1
i > 1 and to the right of X̄i when 0 < m1

i < 1. All the remarks about
indexing pertain equally well for this or any other representation of ` . What about changing
the parametrization? Let us consider an example where a line in ` ⊂ R

5 is specified by four
indexed points of the form ¯̀

i−1,i for which it is required to find the linear relation between
x2 and x5,

`2,5 : x5 = m25x2 + b25 . (1.5)

There is no problem returning to the system of four linear equations `i−1,i , i = 2, . . . , 5
specifying the line `, from which the points ¯̀

i−1,i were obtained, and after doing the necessary
algebraic manipulations obtain eq. 1.5. But we can do this equivalently by just following

X

Y

X1 X3X2 X4 X5

¯̀
1,2

¯̀
4,5

¯̀
2,3

¯̀
3,4

¯̀
2,5

Figure 1.4: Algorithm for constructing a pairwise linear relation, in this case ¯̀
25, given the

N − 1 points, ¯̀
i−1,i , representing the line.

4

what is in the picture. By assigning any two different values to x1 the polygonal lines
representing two points on ` are constructed. Joining the two pairs of x2 and x5 values
provides two lines whose intersection must, due to the line → point mapping in 2-D, be the
point ¯̀

2,5 whose coordinates are

¯̀
25 = (

3

1−m25
+ 1 ,

b25

1−m25
) . (1.6)

yielding the values of m25 and b25. By the way, the 3 is for the distance between the X̄2 and
X̄5 axes and the translation by 1 is for the distance between the X̄2 and y-axis. Incidentally,
we see that all the information about a line is really contained in its N − 1 indexed points.
For the remainder, all sections marked by ** can be safely omitted at the first reading.

Two Point Form **

The representation of a line ` independent of parametrization can best be constructed from
two of its points. Starting with

Pr : (p1,r , p2,r , ..., pN,r) r = 1, 2

for any other point P ∈ `, P = λP1 + (1 − λ)P2 , λ ∈ R. When the two points are both
ideal they define an ideal line. Otherwise, if one of the points is ideal it is a simple matter
to replace it by a second ordinary point distinct from the first and still obtain the same line
`. So without loss of generality only lines defined by two ordinary points need to be dealt
with.

A pair of variables xi , xj

(pi,r, pj,r) i, j ∈ 1, 2, ..., N r ∈ 1, 2 . (1.7)

X

Y

Xi Xj

. . .

* ¯̀
i,j

(i− 1, pi,2)

(j − 1, pj,2)

(j − 1, pj,1)

(i− 1, pi,1)

Figure 1.5: Construction of ¯̀
i,j

5

specify the component of ` which corresponds to its projection on the xixj coordinate plane.
As in the 2-D case a point, ¯̀

i,j , represents this component though it is now essential to
identify it with the proper indices – see Fig. 1.5. Given the data in (1.7) this component is

∆jxi −∆ixj + Di,j = 0 (1.8)

which is a line `i,j whose line coordinates are [∆j,−∆i, Di,j] where







∆i = pi,2 − pi,1 ,
∆j = pj,2 − pj,1 ,
Di,j = pj,2∆i − pi,2∆j = pj,1∆i − pi,1∆j

(1.9)

for all i, j ≤ N . When ∆i and ∆j are not both zero, eq. (1.8) actually defines a line which
is represented by the point

¯̀
i,j : ((i− 1)∆j − (j − 1)∆i , −Di,j , ∆j −∆i) (1.10)

where, as usual, the distance between adjacent coordinate axes is 1. The relevant transfor-
mations here are

¯̀
i,j = Ai,j`i,j , `i,j = A−1

i,j
¯̀
i,j (1.11)

where

Aij =





(i− 1) (j − 1) 0
0 0 −1
1 1 0





and

(i− j)A−1
ij =





1 0 (1− j)
−1 0 (i− 1)
0 (j − 1) 0



 .

There are still some important considerations missing which are completed in section 1.1.4.

1.1.2 Some properties of the indexed points

The 3-point collinearity

The representation of a line in terms of N − 1 points can be given for any of the various
descriptions of the line by linear equations each involving a pair of variables. Actually, once
a sufficient representation of a line in terms of N − 1 points is given any other point ¯̀

i,j

can be obtained from the line representation by a geometrical construction. An example is
shown in Fig. 1.4 where starting from the adjacent-variable description of a line in R

5 the
point ¯̀

2,5 is constructed. It is important then to clarify that by the representation S̄ of
an object S is meant the minimal subset of the xy-plane from which the representative P̄
of any point P ∈ S can be constructed. For a line ` ⊂ P

N we have seen that N(N − 1)
indexed points in the xy-plane, corresponding to all distinct pairs of the N variables, can
be constructed. However only N − 1 of these, corresponding to N − 1 linearly independent
equations in pairs of these variables, are needed to represent the line `.

6

¯̀
i,k

¯̀
j,k¯̀

i,j

X̄i X̄j X̄k

(k − 1, pk,1)

(k − 1, pk,2)

(j − 1, pj,1)

(i− 1, pi,1)

x

(j − 1, pj,2)

(i− 1, pi,2)

Figure 1.6: The collinearity for the 3 points ¯̀
i,j, ¯̀

j,k, ¯̀
i,k. The two triangles are in perspective

with respect to the ideal point in the vertical direction. The y-axis is offscale.

The indexed points representing the pairwise linear relation of variables in an N-
dimensional line have a striking and very useful property. For i 6= j 6= k ∈ [1, 2, ..., N]
the three points ¯̀

i,j, ¯̀
j,k, ¯̀

i,k are always collinear. This can be seen by considering again two
points Pr = (p1,r, . . . , pN,r), r = 1, 2 on ` and their projections on the xi, xj, xk three-space
as shown in Fig. 1.6. The projected portions of the points are the vertices of two triangles
with the collinearity of ¯̀

i,j, ¯̀
j,k, ¯̀

i,k being a consequence of Desargue’s Theorem1. Here the
two triangles are in perspective with respect to the ideal point in the vertical direction. This
property, as will be seen, is the “back-bone” of the construction for the representation of
higher dimensional p-flats in N-space (that is planes of dimension 2 ≤ p ≤ N − 1) and it is
referred to as the the 3-point collinearity property. An important special case is for a line
` in 3-D where the 3 points ¯̀

1,2 , ¯̀
1,3 , ¯̀

2,3 are always collinear. In turn, this provides an
important corollary. Consider the plane

π123 : c1x1 + c2x2 + c3x3 = c0 ,

choose a line ` ⊂ π , and denote by L̄ the line determined by ¯̀
1,2 , ¯̀

2,3 and ¯̀
1,3. It is found

by direct computation that for any other line ¯̀′, and L̄′ the corresponding line through

1Two triangles in perspective from a point are in perspective from a line.

7

L̄′

¯̀
23

¯̀′
23

¯̀
12

¯̀
13

¯̀′′
13

¯̀′
13

L̄′′

¯̀′′
12

¯̀′′
23¯̀′

12

L′′
`′′`′
`

x2

π

x3

x1

L̄

X̄1 X̄2 X̄3

π̄123

x

y

L

L′

Figure 1.7: Three lines `, `′, `′′ ⊂ π ⊂ R
3 are chosen. In ‖-coords the 3pt-collinearity property

applied to the three points ¯̀
12, ¯̀

13, ¯̀
23 determines a line L̄ and similarly `′ determines the

line L̄′. Denoting the intersection point by π̄123 = L̄ ∩ L̄′ the line L̄′′, determined by any
other line `′′, is on the point π̄123. The picture hints that the points L, L′, L′′ are on a line
in the plane π. This is a prelude to the chapter on planes.

¯̀′
1,2 , ¯̀′

2,3 , ¯̀′
1,3, the intersection π̄123 = L̄ ∩ L̄′ has coordinates:

π̄123 = (c2 + 2c3 , co, c1 + c2 + c3) . (1.12)

Since these coordinates do not depend on the choice of ` and `′, for any other line `′ ⊂ π the
corresponding L̄′′ must also pass through π̄123 as shown in Fig. 1.7. In short, the image of
every line on the plane π determines a line on the point π̄123, hence two of these lines suffice
to determine the point. This is a preview of the next chapter where it is shown that two
such points each with three indices, provide a representation of a plane π ⊂ R

3.

Exercises

1. Consider a line ` ⊂ R
N whose description, by a set of linear equations, contains xi = ci,

a constant, for some i.

(a) How would such a line be represented?

(b) Can such a line be represented by N − 1 indexed points?

2. Prove the property illustrated in Fig. 1.7

8

3. Given a line ` and the N − 1 points ¯̀
i−1,i , i = 2, . . . , N , provide an an algorithm for

determining the point ¯̀
ij, for any distinct pair i, j and state its complexity – see Fig.

1.4.

4. For lines where some of the m’s are close to 1 their representation becomes prob-
lematical. Find a transformation that can always convert points outside the axes to
equivalent points between the axes. Write an algorithm to perform this transformation
so that all points representing a line are in between the axes. What is the algorithm’s
complexity.

1.1.3 Representation Mapping I

The 3-point collinearity property and its higher-dimensional relatives are used in the next
chapter for the representation of p-flats (i.e. “planes” of dimension 0 ≤ p ≤ N − 1) in
R

N by means of indexed points. As explained shortly, the 0 lower bound pertains to the
representation of points P ∈ P

N as shown in Fig. 1.8.

Y

X

X̄1 X̄2 X̄j X̄N

pi
1

pi
2

pi
j

pi
N

Figure 1.8: A point P i = (pi
1, p

i
2, ..., p

i
j, ..., p

i
N) represented by N points pi

j with one index.

The methodology’s goal is the construction of a mapping J for the unique representation of
objects (i.e. subsets) of P

N by subsets of P
2; an object B ⊂ P

N is represented by its image
J (B) = B̄. From the starting with the representation of a point P ∈ P

N , it has been clear
that representation is not a point-to-point mapping. Formally,

J : 2P N → 2P 2× 2[1,2,...,N] , (1.13)

where 2A = [B ⊆ A] denotes the power set of a set A and R
N is embedded in the projective

N-space P
N . The 2[1,2,...,N] in the product pertains to the indexing by subsets of [1, 2, . . . , N].

The answer to “how can R
N be mapped into the plane R

2 without loss of information?”
is found by examining the cardinality2 of the domain and range of J . Let |A| denote the

2Only elementary considerations are needed. For example, the sets of rational and real numbers R have
cardinality ℵ0 and ℵ1 respectively. The comparison ℵ0 < ℵ1 signifies the non-existence of a 1-1 and onto
mapping from the rationals to the reals. For more on the fascinating topic of infinite sets and cardinal
numbers see any good text on Topology.

9

cardinality of a set A and recall that by taking the finite product of a set with itself the
cardinality remains invariant. For our specific case,

|R| = |R2| = |RN | = ℵ1 ⇒ |2R
2| = |2R

N | = ℵ2 ,

With the domain and range having the same cardinality the construction of a 1-1 mapping
J is possible; what is left is to actually do it. “The devil is in the details” ... as sages have
said. The image J (B), of a set B ⊂ P

N , is given in terms of the xy Cartesian coordinates
superimposed on the parallel axes with J (B) = J (C) ⇔ B = C. At this stage we can
get a glimpse of the mapping’s recursive construction algorithm, the recursion being on the
dimensionality of the object being represented.

1. Non-recursive step is the alternate representation of a point

P i = (pi
1, p

i
2, , . . . , pi

j , . . . , pi
N).

Rather than using a polygonal line for P̄ i, for consistency with what follows, the
representation is also given in terms of indexed points on the xy-plane. Specifically,
P i ∈ P N is mapped into (or represented by) N points with one index as shown in Fig.
1.8. Of course, this is completely equivalent to its polygonal line representation, where
the indexing sequence provides the straight-line connectivity when needed.

If Nr denotes the number of points and nr the number of indices appearing in the
representation, for a (point) 0-flat

Nr + nr = N + 1 .

2. First recursive step : is the construction of a 1-flat (line) ` ⊂ P
N consisting of N−1

points with two indices. The steps are :

(a) for each of two distinct 0-flats P1, P2 ⊂ ` the N points of their representation are
connected, via the indexing sequence, to provide two polygonal lines,

(b) intersecting adjacent portions of the polygonal lines yields the N − 1 points,
¯̀
i−1,i , i = 2, . . . , N .

Alternate but equivalent representations correspond to the intersection of N − 1 pairs
of lines joining the appropriate alternate vertices of the polygonal lines.

Checking the previous sum for 1-flats,

Nr + nr = (N − 1) + 2 = N + 1 .

3. The construction procedure turns out to be generic for the representation of p-flats of
all dimensions.

The emerging relation for Nr + nr holds with the caveat that the subset of points in the
representation is minimal. It is revisited as new representations are obtained.

10

1.1.4 The General Case **

Indexed points for arbitrary parametrization

T he approach so far clarifies the basic representational issues. However, the results in sec-
tion 1.1.1 do not cover all the possibilities. There remain complications arising due to the
orientation of some lines with respect to the principal axes. Specifically, a line ` may be
perpendicular to a principal 2-plane xixj. Then both xi and xj are constant for ` so the pro-
jection of `i,j on the xixj-plane is not a line but a point (pi, pj). It’s representative in parallel
coordinates, therefore, is not a point but a line through the two points (i− 1, pi), (j − 1, pj)
and this line has the role of ¯̀

i,j. These contingencies, though conceptually straight-forward,
require that the foundations of the representational issues be revisited in a thorough way.

In R
N there are N(N − 1) different linear equations connecting the variables pairwise

and, therefore, as N increases the number of sets of equations available for describing a
line increases rapidly. A precise count as a function of N is given shortly. The reasons for
choosing one description rather than another are irrelevant here. Rather, the class of such
descriptions is of interest for which purpose a graph-theoretic approach is appropriate. Let
the N variables be represented by N vertices of a graph. An edge connecting a pair of vertices
indicates that a linear relation is given between the corresponding pair of variables. A set
of equations describing a line ` corresponds to a subgraph with N vertices and N - 1 edges
which must be a spanning tree of the complete graph of N vertices. For if the subgraph is not
connected the corresponding system of equations contains at least two independent sets of
variables such that their values are independent of values taken on by the variables of other
sets. Also, if there is a closed loop in the graph then at least one vertex is disconnected,
there being only N − 1 edges. Once a particular variable is selected and designated as
the root of the tree the number of different ways in which N vertices and N-1 edges can
be assembled into a spanning tree is N (N−1) (Cayley’s formula) [13]. In [3] there is a nice
proof3 that the number of spanning trees with N distinct vertices is N (N−2). From this result
Caley’s formula can immediately obtained by choosing any one of the N vertices as the root.
From our viewpoint this is the number of distinct N − 1 linearly independent equations,
with the chosen variable as the root, can be selected out of the possible N(N − 1) pairwise
linear equations. Assigning a value to the start variable, corresponding to the root, initiates
the computation and suffices to determine the values of all the remaining variables for the
specification of a point on the line.

Since variables which are constant are not involved in linear relations with another vari-
able there is no edge connecting their vertex to another vertex. That is to say, such vertices
are isolated. If there are N−M such variables, then the remaining M vertices together with
M − 1 edges again form a spanning tree as before, rooted, once a start variable is chosen.
Of course in this case there are M (M−1) ways for selecting the M − 1 independent pairwise
linear equations with the designated start variable. An example is shown in Fig. 1.9. Let S
be the set of indices for which the variables are not constant where

S = (i1, i2, ..., iM)

and 1 ≤ i1 < i2... < iM ≤ N , and let S̃ be the complementary set of indices. Note that two

3Also cited in [3] is [12] which has a collection of different proofs for the same result.

11

7

6 8

39

1

5

42

Figure 1.9: Tree with 5 as the root corresponding to x5 being the start variable of the system.
The isolated vertices have indices {2, 6, 7} = S̃.

lines `1 and `2 are parallel if and only if

• S1 ≡ S2 = S and,

• for all ir 6= is in S1 the ¯̀
ir ,is have the same abscissa for both lines.

In other words, the ¯̀
ir ,is for each pair ir is ∈ S lie on a vertical line as in the 2-D case

discussed in Ch. 1. Clearly, consideration of S̃i , i = 1, 2 is not needed since xi and xj

constant implies that ` is orthogonal to the xixj-plane.
We have shown that any line ` ⊂ R

N is given, after an appropriate relabeling of the
variables, by the N − 1 equations of the form :

`i,j : xj = mj
ixi + bj

i , i < j ∈ S = (i1, i2, ..., iM) (1.14)

`o,k : xk = bk , k ∈ S̃ = (iM+1, ..., iN) (1.15)

The “dummy” index o is introduced to preserve uniformity in indexing each relation by two
indices rather than sometimes by two and others (i.e. the constant variables) by one. From
this and the considerations provided in section 1.1.1 it is immediate that :

Theorem 1.1.1 Representation of a line ` ⊂ R
N for arbitrary parametrization.

Any line ` ⊂ R
N can be represented by N − 1 points each of which has two indices, where

M − 1 points are given by

{

¯̀
i,j = (j − i , bj

i 1−mj
i) for i, j ∈ S = (i1, i2, ..., iM) , ; i 6= j and

¯̀
o,k = (k − 1, bk, 1) for k ∈ S̃ = (iM+1, ..., iN) .

(1.16)

As in the previous cases, it is clear that the horizontal position of the point ¯̀
i,j is determined

by the slope mj
i . Specifically for i < j, ¯̀

i,j is to the left of the X̄i axis for mj
i > 1, in between

the X̄i and X̄j axes for mj
i < 0 and to the right of X̄j axis for 0 < mj

i < 1. The construction
of a point on ` given the ¯̀ is illustrated in section 1.1.5. Once a value is assigned to any
variable with index in S via the ¯̀

i,j’s all other variables with indices in S are known. Since
variables in S̃ are also known all the N coordinates of a point on ` are known.

12

Two Point Form

The general two-point form representation, obtained in a completely analogous way, is :

Theorem 1.1.2 Representation of a line ` ⊂ R
N – Two-Point Form. Any line in R

N

can be represented by N − 1 points where, M − 1 points (some possibly ideal), one for each
edge connecting variable i and variable j are given by

¯̀
i,j = (xi,j, yi,j)

where for ∆i 6= ∆j the point coordinates are

xi,j =
(j − i)∆i − (i− 1)(∆i −∆j)

∆i −∆j

, yi,j =
pi,1pj,2 − pi,2pj,1

∆j −∆i

, (1.17)

and for ∆i = ∆j, the ideal point (direction) is

xi,j = j − i , yi,j = pj,1 − pi,1 . (1.18)

In this case, pj,2 − pi,2 = pj,1 − pi,1 and there N −M points given by:

(k − 1, xk) (1.19)

one for each k ∈ S̃. By the definition of ¯̀
i,j the three points (i− 1, xi) , ¯̀

i,j , (j − 1, xj) lie
on a straight line, so that as a consequence of eq. (1.17).

(i− 1− xi,j)xj + (j − i)yi,j − (j − 1− xi,j)xi = 0 , (1.20)

and as a consequence of eq. (1.18)

xi,jxj − xi,jxi = (j − i)yi,j . (1.21)

Once a value is assigned to any variable with index in S then via the ¯̀
i,j’s all other

variables with indices in S are found. But variables in S̃ being constant are also known and
so are all the N coordinates of a point. Given xi let λ satisfy the equation

xi = λpi,1 + (1− λ)pi,2 (1.22)

which is always possible since by hypothesis pi,1 6= pi,2 . It follows directly from eqs. (1.17),
(1.18), (1.20) and (1.21) that

xj = λpj,1 + (1− λ)pj,2 . (1.23)

That is, any point so defined satisfies the definition and belongs to the straight line.

13

1.1.5 Construction Algorithms **

And now, after all this preparation, we provide “pencil and paper” construction algorithms
for viewing the objects that we have been discussing. This entails the representation of the
line (in terms of indexed points), as well as the construction of points on the line. Together
with the rooted tree representation for the desired parametrization (i.e. the `i,j) and the
isolated vertices corresponding to the variables with constant values, an array D with N − 1
rows and five columns is used as data structure. Essentially the order of rows is unimportant,
although programming considerations may dictate otherwise. There are two distinct types
of rows in the structure i.e.

i j xi,j yi,j hi,j

0 k 0 bk 1

The first type provides the indices of variables connected by an edge in the first two columns.
The next three columns are the homogeneous coordinates (xi,j, yi,j, hi,j) of the point ¯̀

i,j,
hi,j = 1 for regular (i.e. finite) and hi,j = 0 when it is ideal in which case the coordinates
(xi,j, yi,j) define the slope of the direction. The second row type pertains to xk = bk a
constant, with xi,j = 0, yi,j = bk and hi,j = 1. In other words, the variable’s index is in
column two and the variable’s value is in column four. Column three and five have only 0’s
and 1’s respectively.

In the complete data structure there are M − 1 rows of the first type and N −M rows of
the second type. Of course, for fixed variables there is some waste in the structure. But since
the occurrence of such variables will certainly be a rare event it is not useful to maintain
this part of the data in a separate structure. For the time being it is assumed that no ∆i

is zero, that is, all variables are unconstrained. It is apparent that there is sufficient data
in the data structure to compute a point on the line. To guide the computation of such a
point a framework, called adjacency data is provided. It consists of a set of arrays denoted
by Ai , one for each i ∈ S. The Ai has two rows and as many columns as there are edges
connecting the ith variable to other variables having the form :

Ai =

(

i1 j2 ... ij
r1 r2 ... rj

)

The first column of the array signifies that there is an edge connecting variables with
indices i and i1 and that ¯̀

i,i1 is found in columns 3, 4, 5 of row r1 of the data structure,
likewise for the remaining columns of the array. Note that reordering rows of the data
structure requires a like reordering of the second rows of the adjacency arrays. The algorithm
constructing a point on a line can now be stated.

Input : consists of the adjacency data, the data structure and an index k for which xk,
start variable is to be assigned a value vk.

Output : is a list of N values, the coordinates of a point on a line.

1. for i = 1 to N mark all x’s new

2. put k on queue (Q), for vk on xk ← old

3. while Q not empty do

4. for adjacency array Ai for first i in Q

14

(a) while adjacency array not empty do
(b) for xj not old, j first in row 1

i. find the value of xj

ii. append j to Q
iii. xj ← old
iv. delete first column of A

(c) delete first index in Q

5. stop

The treatment of the queue Q is such that each variable is dealt with at most once.
The graph is connected and, via the adjacency data, each variable enters the queue. Thus
each variable is dealt with exactly once. Given the value of one variable there are N − 1
calculations required for the remaining variables. Now each edge (i,j) appears twice in the
adjacency data, once in Ai and once in Aj. Since there are N − 1 edges, this means there
are 2(N − 1) edge occurrences in the algorithm. But once a variable is calculated it is not
calculated again. Hence there are N − 1 calculations of variables with N − 1 bypasses and
the number of calculations is O(N). The extension to the general case is obvious. It is also
worth noting that for the case eq. (1.14) the adjacency set is implicit in the data structure
as is of course is the special cases of eqs. (1.1) and (1.3). The various aspects and nuances
of the above are illustrated and clarified with the following example.

An Example

Here a line in R
9 is specified by two of its points whose coordinates appear in the first 3

columns of Table 1.1. As already discussed, a number of descriptions of the line in terms of
linear equations involving pairs of variables is possible. The detailed construction of a the
chosen set of ¯̀

i,j is shown in Fig. 1.10. First the polygonal lines representing the two points
P1 and P2 are drawn. Then the ¯̀

i,j, corresponding to the choice of x5 for start variable, are

Coords Point 1 Point 2 i j xi,j yi,j hi,j

x1 -4.0 2.0 1 5 2.4 -0.7 1
x2 2.0 2.0 3 5 3.2 -0.3 1
x3 -3.0 3.0 4 1 7.5 2.0 1
x4 -1.6 2.0 8 5 5.5 0.25 1
x5 1.5 -2.5 9 3 6.0 -1.0 0
x6 -2.0 -2.0 0 2 1 2.0 1
x7 -0.5 -0.5 0 6 5 -2.0 1
x8 -1.0 3.0 0 7 6 -0.5 1
x9 -4.0 2.0

Table 1.1: On the left 3 columns are the coordinates of two points specifying a line ` from
which a set of 8 ¯̀

i,j is constructed. The data structure used in the point construction
algorithm, given in the next 5 columns, provides the ¯̀ and their locations. Note the values
hi,j = 1 indicating finite and hi,j = 0 ideal points. The points designating the xk = constant
(i.e. k ∈ S̃) have i = xi,j = 0.

15

obtained by the intersection of pairs of thin dashed lines seen in the figure. For example,
in order to obtain ¯̀

1,5 the x1 and x5 coordinates of each point are joined. The intersection
of these two lines is ¯̀

1,5. The corresponding rooted tree for the start variable x5 is the one
already shown in Fig. 1.9. Altogether for this tree the points required are ¯̀

1,5, ¯̀
3,5, ¯̀

1,4,
¯̀
5,8, and ¯̀

3,9. The last is an ideal point since x9 = x3 = −1, hence the slope is 1, and it
is indicated in the figure as a direction. The corresponding data structure appears in the
rightmost 5 columns of the table. Here the number of unconstrained variables is M = 5 and
there are N −M − 1 = 3 constant variables.

The ¯̀
i,j together with the points ¯̀

0,j, on the X̄2, X̄6 and X̄7 axes, for the constant xj are
also shown in Fig. 1.11 together with the construction of a point P ∈ ` for a given value of
x5. Recall that x5, the start variable, corresponds to the root of the tree. The construction
can be easily modified for another choice of, possible M = 5, start variable.

Identifying the ¯̀
i,j

There are certain practical problems that must be dealt with. One difficulty arises in labelling
these indexed points. The following example illustrates the nature of the problem. Given
the two points

P1 = (a, a + b, ..., a + (N − 1)b)

P2 = (c, c + d, ..., c + (N − 1)d)

where b 6= d for any pair i, j

¯̀
i,j = (

a− c

d− b
,

ad− bc

d− b
) . (1.24)

That is, all the ¯̀
i,j may be congruent (a situation which is revisited in Chapter ??). Even

without such unusual contigencies the labeling of the points may cause overcrowding in the

Y

X0

4
3
2
1

1
2
3

−
−
−
−

P 2

X1 X2 X3 X4 X5 X6 X7 X8 X9

¯̀
3,9

¯̀
3,5¯̀

1,5

¯̀
1,4¯̀

5,8

P 1

Figure 1.10: Construction of the ¯̀
i,j for the example with the rooted tree in Fig. 1.9 and

the data shown in Table 1.1.

16

Y

X0

4
3
2
1

1
2
3

−
−
−
−

X1 X2 X3 X4 X5 X6 X7 X8 X9

¯̀
3,9

¯̀
0,2

¯̀
3,5¯̀

1,5

¯̀
5,8

¯̀
1,4

¯̀
0,7

¯̀
0,6

Figure 1.11: The `i,j for the example and the construction of a new point P ∈ ` for x5 =
−0.75.

figure. This suggests that a separate tabulation of the ¯̀
i,j may be preferable rather than

attempting to label these points directly on the diagram.

Lines with positive slopes

Often the ¯̀ are out of the scope of the picture. For such cases two line segments (portions
of the polygonal lines representing two points on the line) may be shown, whose intersection
(when extended) defines the ¯̀. The question arises as to whether it is possible to recast the
problem of line representation in such a way that these “distant” points are not required for
the representation. It is not difficult to see that the following approach not only eliminates
ideal points from the representation, but has a number of other advantages.

Make the transformation of variables

x′
i = eixi (1.25)

where ei = +1 for index i ∈ S̃. For the variables in S suppose the vertices for xi, xj define
an edge of the tree, and that the vertex for xj is either the root or lies between the vertex
for xi and the root, so that the linear equation in this case is

xi = mj
ixj + bj.

The remaining ei are developed recursively. Starting at the root index i set ei = +1 and
visiting the remaining nodes in order setting e1 = +1 or −1 to ensure that the slope m′j

i of
the line

xi = m′j

ixj + bj. (1.26)

is negative. Here m′j
i = eiejm

j
i and b′ji = eib

j
i . Since the slope is negative it follows immedi-

ately that the x coordinate of ¯̀′
i,j is between i − 1 and j − 1, and that the y coordinate is

less in absolute value than the absolute value of bj
i . With everything nicely bounded all the

17

i j xi,j yi,j

1 5 2.4 -0.7
3 5 3.2 -0.3
4 1 1.875 -0.5
8 5 5.5 0.25
9 3 5.0 0.5
0 2 2.0 0
0 6 -2.0 0
0 7 -0.5 0

Table 1.2: The ¯̀′
i,j’s where the location of xi,j is now between the corresponding axes.

¯̀
i,j’s can be placed within the frame of a picture. Calculation of a point on the line proceeds

as in the preceding algorithm for the X̄-system, followed by appropriate changes of sign and
reflection in the X̄i-axis of those coordinates for which ei is negative. Thus the algorithm is
still of order O(N). Likewise construction proceeds with the x′-system, followed by reflec-
tion in the x axis of those coordinates for which ei is negative. However, while adjacency
data depends only on the underlying graph structure, the numbers ei are determined by the
signs of the slopes, and hence must be recalculated for each case. Evidently this does not
alter the fact that the algorithm is of order O(N). For the above example it turns out that
the numbers ei are successively 1,1,1,-1,1,1,1,1,-1. The data structure is given in Table 1.2.
where now no fifth column is needed. It is really a simple matter to notice by inspecting Fig.
1.10 that only the points ¯̀

1,4 and ¯̀
3,9 do not lie in between their corresponding two axes.

Hence only for the indices 4 and 9 is ei = −1 as indicated. The ¯̀′ are constructed from the

X0

4
3
2
1

1
2
3

−
−
−
−

Y

X1 X2 X3 X4 X5 X6 X7 X8 X9

¯̀′
0,2

¯̀′
1,5

¯̀′
3,9

¯̀′
5,8

¯̀′
0,7

¯̀′
0,6

+ + -+

+

+ + - +

P̄ ′1 P̄ ′2

¯̀′
3,5¯̀′

1,4

Figure 1.12: The `′i,j for the example. First the points P̄ ′
1 and P̄ ′

2 are drawn. Then the
two points ¯̀′

1,4, ¯̀′
3,9, marked by rectangles, are constructed as indicated. All other points

are unchanged though the prime (’) is added for notational consistency. Note the absence of
ideal points.

18

X0

4
3
2
1

1
2
3

−
−
−
−

Y

X1 X2 X3 X4 X5 X6 X7 X8 X9

¯̀′
0,2

¯̀′
1,5

¯̀′
3,9

¯̀′
5,8

¯̀′
0,7

¯̀′
0,6

+ + -+

+

+ + - +

¯̀′
3,5¯̀′

1,4

Figure 1.13: The polygonal line for the point P now denoted by P ′ in the new system x′
i.

transformed points P̄i
′
, i = 1, 2 and shown in Fig. 1.12.The previously contructed point P

for x5 = .75 is shown in the x′
i-coordinate system in Fig 1.13.

Whereas the transformation (1.25) xi → x′
i works well for a single line its application to

several lines simultaneously can be become problematical. By allowing different pairwise lin-
ear relations for each line greatly increases the prospect that their index-point representation
can be brought within the framework of the picture (see exercises below).

Exercises

1. For the example of section 1.1.5 choose another start variable other than x5 and repeat
the constructions. Namely,

(a) exhibit the rooted tree,

(b) construct and show the corresponding ¯̀,

(c) construct and show the point P ’,

(d) construct and show the ¯̀′,

244 12 24

Figure 1.14: The 4 kinds of distinct rooted-trees with all vertices labeled (i.e. 1, 2, 3, 4) –
the number of trees allowing permutations of the vertex labels is below each type.

19

(e) construct and show the point P in the x′
i system.

2. This is an example of the tree enumeration for N = 4. Show that,

(a) only four distinct kinds of trees are possible – see Fig. 1.14 – and,

(b) the number of distinct rooted trees (allowing permutation of vertex labels) are
those shown below each tree.

How many distinct (not rooted) trees are they?

3. The questions below pertain to the line representational problem of section 1.1.5 and
the transformation (1.25).

(a) For N = 3 let ` and `′ be two lines such m2
1, m

3
2 < 0 and m′

1
2, m′

2
3 > 0. Is

it possible via transformation eq. (1.25) to bring all the four ¯̀′ in between the
corresponding axes? If not give a counterexample.

(b) For N = 3 and 3 lines `, `′, `′′ state and prove necessary and sufficient conditions
for the existence of a transformation xi → x′

i such that the ¯̀
i,j, ¯̀′

r,s,
¯̀′′
u,v are in

between the corresponding axes. Provide a specific example.

(c) Answer the previous question for specific numbers N ≥ 4 and the number of lines
L ≥ 4.

(d) Generalize the result of the previous question for arbitrary N and L — this is an
open question and likely to be hard.

1.1.6 Rotations & Translations

In ‖-coords projective transformations in R
N are dual to other projective transformations

[2]. In R
2 we saw the duality between the rotation of a line ` about one of its points O with

the translation of the point ¯̀ on the line Ō. This generalizes nicely in R
N . As an example,

consider the rotation of a line ` about one of its points P , as shown in Fig. 1.15, with the
rotated line denoted by `′. This corresponds to the simultaneous translation of the ¯̀s to the
new positions ¯̀′s all being on the polygonal line P̄ . In fact, the pencil of all lines on P is
represented by the collection of all quadruples ¯̀

i,i−1, i = 1, 2, 3, 4 on the polygonal line P̄
with `′ being one of these lines. This discussion leads nicely to the next topic.

Exercise

1. With reference to Fig. 1.15 show the translation of the point P to a new position P ′

and the line unrotated on P ′.

1.2 Distance & Proximity Properties

1.2.1 Intersecting Lines

It is clear from Fig. 1.15 that P = ` ∩ `′, and this in fact suggests an easy intersection
algorithm for the adjacent-variables description. Specifically the two lines ` , `′ intersect

20

X̄1 X̄3X̄2 X̄4 X̄5

¯̀
12

¯̀
23

¯̀′
12

¯̀′
23

¯̀′
45

¯̀′
34

¯̀
34

¯̀
45

P̄

P̄

Figure 1.15: Two intersecting lines in 5-D. A different interpretation is that the line ` rotated
about one of it’s points shown here by the polygonal lin. This corresponds to the translation
of the ¯̀s to the new positions ¯̀′s on the same polygonal line.

⇐⇒ the line P̄i,i+1 joining the points ¯̀
i,i+1 and ¯̀′

i,i+1 intersect the xi-axis at the same point
as the line P̄i+1,i+2 ∀i. The polygonal line so constructed represents the point of intersection
of the two lines. Formally, for two lines ` and `′, described in terms of adjacent-variables,

∃P = ` ∩ `′ ⇔ P̄i,i+1 ∩ P̄i+1,i+2 = (i, pi+1) ∀i = 1, . . . , N − 2, (1.27)

where xi+1(P) = pi+1 the ith-coordinate. Actually, P̄1,i = (p1 , pi) is the projection on the
x1xi-plane of the point of intersection between the two lines – see Fig. 1.16 where T is the
base-variable. The intersection conditions for the base-variable description of the lines as
given by

` , `1i : xi = mix1 + bi ,
`′ , `′1i : x′

i = m′
ix1 + b′i ,

}

(1.28)

are :

∃P = ` ∩ `′ ⇔ αi = − b′i − bi

m′
i −mi

=
∆bi

∆mi

= p1 , ∀i = 2, . . . , N (1.29)

where x1(P) = p1. Obtaining an intersection algorithm with O(N) time-complexity and
generalizations to other line parametrizations are straight-forward. There are special cases

21

Y

X

T̄ X̄1 X̄2 X̄3

¯̀′
T1

¯̀
T1

¯̀
T2 ¯̀′

T2
¯̀′
T3

¯̀
T3

Figure 1.16: Intersection, for the base-variable line description, of two lines in 4-D. This
provides the space and time coordinates of the place where two particles moving with
constant velocity collide.

not covered by these conditions whose treatment is simply not warranted at this stage (see
[9] for a complete treatment, and [7] for an early exposition).

1.2.2 Non-intersections

Here it is convenient to illustrate the situation in 4-D using the base-variable representation
of a line:

xi = viT + so,i , i = 1, 2, 3 . (1.30)

and shown in Fig. 1.16. There the intersection of two lines described by eq. (1.30), each
represented by 3 indexed points ¯̀

T i, is constructed. For T denoting time and x1 x2 x3

the space coordinates of a particle moving with constant velocity ~V = (v1 v2 v3) and initial
position So = (so,1 , so,2 , so,3) eq. (1.30), and equivalently it’s 3 point representation, provide
the complete trajectory information of the particle. The two sets of triple points ¯̀

T i and
¯̀′

T i describe the trajectories of two moving particles. The construction in Fig. 1.16 shows
that two such particles collide since they go through the same point in space at the same
time (i.e. there is a time-space intersection). Perhaps some of the power of the ‖-coordinate
representation can be appreciated from this simple example.

Clearly intersections in space (3-D and certainly higher) are very rare, so it behooves us
to study non-intersections and the intersection algorithm can, of course, be used to verify
non-intersections. In the sequence of figures 1.17, 1.18 and 1.19 with the minimum distance
D between them computed and shown, the same algorithm is applied by connecting the
pairs of ¯̀

T i
¯̀′

T i and noticing that the three lines so formed do not intersect the T -axis at

22

the same value. Hence the lines ` and `′ do not intersect. Let

αi = (T − axis) ∩ (line− passing − though ¯̀
T i

¯̀′
T i) (1.31)

Let I¯̀, ¯̀′ = [max αi , min αi]. Observing the figures, it looks like I ¯̀, ¯̀′ → 0 as D→ 0, which
is reasonable since we already know that I ¯̀, ¯̀′ = 0 when the two lines intersect (D = 0).

1.2.3 Minimum distance between two lines in R
N

N ow we consider the more general problem of finding and, if possible, visualizing the mini-
mum distance between the two lines as well as the points one on each line where the minimum
occurs. In many problems what is required is the minimum distance when one or more of the
variables is constrained to have the same value for both lines. For example, in Air Traffic Con-
trol and Motion Planning in general one is interested in knowing the time, and position, when
two aircract are the closest. Therefore, it is appropriate for such applications to constraint
the time and find the minimum distance and position under that constraint. In that case, the
minimum distance is zero when there is a time-space collision. For if time is not constrained
there will be two points Pm = (tm , x1 , . . . , xN−1) ∈ ` , P ′

m = (t′m , x′
1 , . . . , x′

N−1) ∈ `′

where the minimum distance occurs with tm 6= t′m that would not be the closest distance
between the two moving objects at the same time.

Y

X

T̄ X̄1 X̄2 X̄3

¯̀
T3

¯̀′
T3

¯̀
T2

¯̀
T2

¯̀
T1

¯̀′
T1

D = 20 T = .9

Figure 1.17: Non-intersection between two lines in 4-D. Here the minimum distance is 20 and
occurs at time = .9. Note the maximum gap on the T̄ -axis formed by the lines joining the
¯̀’s with the same subscript. The polygonal lines representing the points where the minimum
distance occurs are shown and they have the same value of T.

23

Y

X

T̄ X̄1 X̄2

D = 10 T = 1.6

¯̀
T1

¯̀′
T1

¯̀
T3

¯̀′
T3

¯̀
T2

¯̀′
T2

X̄3

Figure 1.18: Non-intersection between two lines in 4-D. Here the minimum distance is 10
and occurs at time = 1.6. Note the the diminishing maximum gap on the T̄ -axis formed by
the lines joining the ¯̀’s with the same subscript and compare with Fig. 1.17. The polygonal
lines representing the points where the minimum distance occurs are shown.

Y

X

T̄ X̄1 X̄2 X̄3

¯̀
T1

¯̀′
T1

¯̀
T2

¯̀′
T2

¯̀
T3

¯̀′
T3

D = 1.5 T = 1.8

Figure 1.19: Near intersection between two lines in 4-D. Here the minimum distance is 1.5
and occurs at time = 1.8. Note the the diminished maximum gap on the T̄ -axis formed by
the lines joining the ¯̀’s with the same subscript. The polygonal lines representing the points
where the minimum distance occurs are shown.

24

Constrained L1 metric minimum distance

The following result suggests that in some way the “natural” metric for ‖-coords is the L1

(or “Manhattan”) metric where the various components can actually be seen – see Fig. 1.20.
The L1 distance between two points P = (x1 x2 , . . . xN) and P ′ = (x′

1 x′
2 , . . . x′

N) is given
by

L1(P , P ′) =
N

∑

i=1

|xi − x′
i|

Now if P ∈ ` and P ′ ∈ `′ for the lines given by eq. (1.28) and the base variable x1 is

y

x

.

X̄1 X̄2 X̄i X̄i+1 X̄N−1 X̄N

x1

xi

xN

xN−1

x′1

x′2

x2

xi+1

x′N−1

x′N
x′i

x′i−1

Figure 1.20: L1 distance between the points P = (x1, ..., xi, ..., xN) and P ′ =
(x′

1, ..., x
′
i, ..., x

′
N).

constrained to be the same for both points, then the distance is given by ,

L1(x1) =

N
∑

i=2

|xi − x′
i| =

N
∑

i=2

|∆mi||x1 − αi| , (1.32)

where the “intercepts” αi are defined in eq. (1.29).

Theorem 1.2.1 (Constrained Min-Dist) – The unique minimum value of L1(x1) is attained
at x1 = αi for at least one i = 2 , . . . , N .

Proof: On the interval αk ≤ x1 ≤ αk+1

L1(x1) =
k

∑

i=2

|∆mi|(x1 − αi) +
N

∑

k+1

|∆mi|(αi − x1)

25

is a linear function of x1 with slope

Tk =
k

∑

i=2

|∆mi| −
N

∑

i=k+1

|∆mi| .

It attains it’s minimum at one of its end-points unless Tk = 0 in which case, L1(x1) is
constant over the interval [αk , αk+1] .

Step 2 – Reorder the index i, if necessary, so that αi ≤ αi+1 ∀ i. First we consider the
case when αi < αi+1 ∀i and no ∆mi = 0. It is clear that for x1 ≤ α1 , L1(x1) increases
monotonically as x1 decreases since the |x1 − αi| increase ∀ i. Similarly, if αN ≤ x1 again
L1(x1) increases monotonically as x1 increases since the |x1 − αi| increase ∀ i. So if L1(x1)
has a minimum it occurs at an x1 ∈ [α2 , αN]. However, this together with the conclusion of
Step 1 ⇒ that the minimum occurs at an x1 = αi for at least one value of i.

L1(x1)

x1
α2 α3 αi αN

Figure 1.21: Monotone increasing portions of L1(x1).

Step 3 – Let SI = L1(αI+1) − L1(αI) , and by the reordering in Step2,

SI =

N
∑

i=2

|∆mi||αI+1 − αi | −
N

∑

i=2

|∆mi||αI − αi |

=

I
∑

i=2

|∆mi|(αI+1 − αi) −
N

∑

i=I+1

|∆mi|(αI+1 − αi)

−
I

∑

i=2

|∆mi|(αI − αi) +
N

∑

i=I+1

|∆mi|(αi − αI)

=

I
∑

i=2

|∆mi|(αI+1 − αI) −
N

∑

i=I+1

|∆mi|(αI+1 − αI)

= (αI+1 − αI)(
I

∑

i=2

|∆mi| −
N

∑

i=I+1

|∆mi|) .

26

Therefore,
SI = (αI+1 − αI)TI . (1.33)

Since αI+1 − αI > 0 the sign of SI is determined by the slope of the line segment over the
interval (αI , αI+1) .

Step 4 – By Step 1,

TI =
I

∑

i=2

|∆mi| −
N

∑

i=I+1

|∆mi| , TI+1 =
I+1
∑

i=2

|∆mi| −
N

∑

i=I+2

|∆mi|

. That is, TI+1 is found by moving the term |∆mI+1| from the negative to the positive sum.
Therefore, TI is monotone increasing with I. Hence from eq. (1.33), if TI 6= 0 the minimum
of SI is attained at a single point. Further for TI = 0, the minimum is attained over an
entire interval (αI , αI+1).

Step 5 – Claim that the smallest value of I 3

I
∑

i=2

|∆mi| ≥ 0.5

N
∑

i=2

|∆mi| (1.34)

is the value of i for α∗i where L1(x1) attains its minimum. For this is the first value of i for
which the slope TI can change sign. This observation provides an algorithm for finding the
α∗i by a construction. This algorithm is described and shown shown in Fig. 1.22 .

Step 6 – When some of the αi are equal, by eq. (1.33), there will be stationary values
of L1 (i.e regions where it is constant) and which may or may not be at the min – see Fig.
1.23.

Step 7 – If there are ∆mi| = 0 for i in a set E, then

L1(x1) =
∑

E

|∆bi| +
∑

Ẽ

|∆mi||x1 − αi| , (1.35)

where E denotes the complement of E. This can be carried out by a modification of the
above procedure. It turns out that for small |∆mi| and |∆bi| not small, the corresponding
αi are very large and, if not all the |∆mi|s are small, then the procedure simply ignores such
values.

On the L2 minimum distance – Monotonicity with N **

Rather than the standard minimization argument, consider “fitting” a sphere of minimum
radius with center at a point P ∈ ` and tangent to `′ at a point P ′. The radius r of this
sphere is the distance between the two lines with P and P ′ are the points in question. To
accomplish this “fit” for any number α let P ∈ ` where x1(P) = α and S the sphere with
radius r and centered at P i.e.

S :

N
∑

i=1

(xi −miα− bi)
2 = r2

27

Figure 1.22: Constructing the x1 = αI minimizing the L1 distance between two lines. For
comparison the minimum L2 distance occurs at x1 = α∗. The bar chart, on the left of the
X̄6-axis, shows the construction of the slopes TI . There the |∆mi| are added in the order
6,2,4,3,5 obtained from the order of increasing αi (as shown in the X̄1-axis). The index I
of the interval where the mid-value of the

∑N

i=2 |∆mi| provides the correct x1 = αI . Here
|∆m4| dominates the sum yielding I = 4.

and for P ′ ∈ `′ with x1(P
′) = α′,

S ∩ `′ :
N

∑

i=1

(m′
iα

′ + b′i −miα− bi)
2 = r2

Let’s now “shrink” the sphere so that it is just tangent to `′. Expanding and expressing in
matrix form yields,

r2 = (α α′ 1)





M −C −D
−C M ′ D′

−D D′ B









α
α′

1



 (1.36)

28

Figure 1.23: Here the L1 and L2 minimum distances are identical and occur for the same
value of the constrained variable

where,

M ′ =

N
∑

i=1

m′
i
2

, M =

N
∑

i=1

mi
2 , C =

N
∑

i=1

mim
′
i

B =
N

∑

i=1

∆bi
2 , ∆bi = b′i − bi (1.37)

D =
N

∑

i=1

∆bimi , D′ =
N

∑

i=1

∆bim
′
i .

The gist in eq. (1.36) is the quadratic relationship between the three unknowns α , α′ , r .
The minimum, since Q = MM ′−C2 ≥ 0 by the Cauchy-Schwarz inequality, is reached when

r2 = B + D′α′ −Dα , α =
M ′D − CD′

Q
, α′ =

CD −MD′

Q
. (1.38)

29

When Q = 0 and B 6= 0 the lines are parallel and the constant square distance between
them is r2 = B − D2/M . For R

2 with m2 6= m′
2 the minimum r ≡ 0 since there the lines

always intersect.

One constrained variable and monotonicity with N

The minimization of the distance now follows for x1 = α∗ constrained to be the same for
both `, `′. By a similar argument s the minimum distance in this case, and the α∗ which
minimizes it are found to be:

α∗ =
(D −D′)

V
= −W

V
= −

∑N

i=2 ∆bi∆mi
∑N

i=2 ∆mi
2

, s2 = B + (D −D′)α∗, (1.39)

where V =
∑N

i=2(m
′
i −mi)

2, W =
∑N

i=2 ∆bi∆mi or

s2 =

N
∑

i=2

∆bi
2 − (

∑N

i=2 ∆bi∆mi)
2

∑N

i=2 ∆mi
2

. (1.40)

Applying Lagrange’s identity yields the alternate form

s2

N
∑

i=2

∆mi
2 =

∑

2≤k<j≤N

(∆bj∆mk −∆bk∆mj)
2 . (1.41)

How does the minimum distance s vary as a function of the dimension N . Let ` and
`′ be two lines in R

N+1 with P and P ′ respectively their closest points and consider the
projections `N , `′N on R

N with closest points PN , P ′
N respectively. In eq. (1.40) denote the

distance s for R
N by sN and the corresponding α∗ by α∗

N , ∆bi = Bi, ∆mi = Mi and

DN =
N

∑

i=2

Mi
2 , CN =

N
∑

i=2

BiMi.

Subscript the analogous variables by N + 1 for R
N+1. Then

s2
N =

N
∑

i=2

B2
i −

C2
N

DN

, α∗
N = −CN

DN

. (1.42)

It is easily found that

sN+1
2 − sN

2 =
(BN+1DN − CNMN+1)

2

DN(DN + M2
N+1)

≥ 0

that sN ↑ N (i.e. monotone increasing) with sN = sN+1 ⇐⇒

α∗
N+1 = −

CN

DN
+ BN+1

MN+1

DN

1 +
M2

N+1

DN

= −BN+1

MN+1

= α∗
N ,

with xN+1(P) = xN+1(P
′) . All this shows that not only does sN increase monotonically

with N but also that in R
N the closest points between `N and `′N are not in general the

projections of the closest points P , P ′ ∈ R
N+1.

30

L1 versus L2 constrained minimum distance

For the constrained L2 distance on x1 we consider the square :

L2(x1)
2 =

N
∑

i=2

(∆mi)
2(x1 − αi)

2 .

It is left as an exercise to prove for the unconstrained case that in R
N

L1(x1) ≥ L2(x1) ≥
L1(x1)√

N
. (1.43)

Therefore for the constrained case where the dimensionality is N − 1,

L1(x1)
2 ≤ (N − 1)L2(x1)

2 .

Hence if α minimizes L1 on a particular interval I i.e.

L1(α) ≤ L1(x1) ∀x1 ∈ I ,

and β minimizes L2
2 on I i.e.

L2(β)2 ≤ L2(x1)
2 ∀x1 ∈ I ,

altogether then,

L2(α)2 ≥ L2(β)2 ≥ L1
2(β)

(N − 1)
≥ L1

2(α)

(N − 1)
. (1.44)

From eq. 1.43 and eq. 1.44 we obtain upper and lower bounds for the minimum L2(x1) in
terms of the minimum of L1(x1). It turns out that these bounds are tight since there exist
cases where these minima are equal for the same x1. Still, it seems like the L2 minimum
distance does not lend itself easily to visualization in ‖-coords as the L1 distance does... take
this as a challenge!

Finding the minimum distance between lines raises the question on how to measure the
“closeness” – according to some criteria – between lines. This is matter of considerable inter-
est in various applications like Computer Vision, Geometric Modeling and others. Gauging
the “closeness” between things of the same kind is really the subject matter of Topology
whose original name was Analysis Situs. In a later section we study various topologies for
lines and show that it is better to do so using ‖ rather Cartesian coordinates.

Exercises

1. Write an algorithm for constructing a point on a line given the ¯̀ and state its com-
plexity.

2. Write an algorithm for constructing the representation of a line given two points P1,
P2 on the line. Be careful and delimit the special cases.

3. Write an algorithm for constructing the intersection of two lines or verifying non-
intersection and state its complexity. Clarify the special cases.

31

4. Write an algorithm for constructing the constrained L1 minimum distance and state
its complexity. List all special cases where the algorithm fails and why?

5. Prove eq. 1.43. – Hint use induction on the dimension N.

6. Construct a case where L1(x1) has stationary portions. State conditions for this to
occur in general

7. Construct a case where the L2(x1) and L1(x1) minima are equal for the same x1.

8. Write an algorithm for minimizing eq. (1.35) and state its complexity.

1.2.4 Air Traffic Control

Around 1985 the interest generated by the impending design and construction of a new Air
Traffic Control (abbr. ATC) system in the USA lead, among other things, to exploration
for new information displays. One of them was based on the ‖-coords methodology (USA
patent # 4,823,272) and it is briefly illustrated here in this the concluding section of the
chapter. The reader interested on some non-technical background on ATC is referred to [5]
and for an early description of the then projected new system AAAS to [6].

Figure 1.24: Path (left) and Trajectory (right) of an aircraft. In ‖-coords the position at
any given time may be displayed.

32

Figure 1.25: Two aircraft flying on the same path since their 1:2 and 2:3 points coincide.
They have a constant separation their velocity being the same since T:1 points have the
same x-coordinate.

Displaying Trajectory Information

The trajectory of an aircraft (considered as a point) with constant velocity as occurs for
much of the time in civil aviation is a line segment in 4-D which may be described by:

x1 = v1T + s1

xi+1 = v2xi + s2

xi+1 = v3xi + s3







. (1.45)

where the xi are the space coordinates, T is time V = (v1, v2, v3) the velocity vector and
S = (s1, s2, s3) the initial position at T = 0. We already know that in parallel coordinates
the complete trajectory information is given by 3 stationary points which may be labeled4

T:1, 1:2 and 2:3. Using the T̄ (time)-axis as a clock, the present position of the aircraft as
well as where it was and where it will be at any given time can be found and displayed as
in Fig.1.24. Recall that the horizontal coordinate of the points representing the trajectory
given by eq. (1.45) is determined only from the quantities mi with m1 being the velocity
component in the x1 direction. With x3 being the altitude m2 is the tangent of, what in
aviation parlance is called, the heading, and horizontal position of T:3 provides the vertical
velocity.

Certain properties of the trajectories are immediately evident from the display. Consider
the situation where aircraft are flying on the same path as is often the case in civil aviation.

4For brevity we skip the ¯̀ part whenever it is clear from the context.

33

Figure 1.26: Closest approach of two aircraft. The time and closest positions are clearly
seen in ‖-coords. Appearances can be misleading in a 3-D (near perspective) display where
the aircraft appear to be nearly colliding. It is even more uninformative in 2-D where only
a projection is displayed.

Figure 1.27: Transforming deviations in heading (angle) to lateral deviations

34

Figure 1.28: Protected Space in 3-D is a thin cylinder

An example is shown in Fig.1.25, where the points 1:2, and 2:3 are shared since these are
the points describing the path in ‖-coords. Further, it is evident that they have the same
velocity since the points T:1 have the same horizontal coordinate. Otherwise, if one point
is between the T̄ and X̄1 axes and the other outside their velocities have opposite signs,
and since they have the same path, they are flying in opposite directions. If they are both
between the axes or both outside the axes then the leftmost point corresponds to the greater
velocity. Other properties are also ”visible”.

The time and positions at which the distance between two aircraft is minimum is displayed
in Fig.1.26. This critical situation is acurately portrayed in ‖-coords, while in 3-D displays
not to speak of 2-D projections it can appear misleading. The possibility of transforming
angular to lateral deviations is illustrated in Fig.1.27. Since our eyes can better distinguish
lateral rather than angular deviations, as those that may occur in the assigned path, had
some “human factors” advantages but which may be partially offset by the the non-linear
scale involved by the (1−mi) in the denominator of the coordinates of the points representing
the path.

35

Figure 1.29: Relation between maneuver-speed and turn-angle. An equal-speed maneuver
results with turn-angle α, whereas turn-angles greater than or less than α require speeds
slower or faster than |~Vk| respectively.

Particle Fields, Scrapes & Conflict Intervals

The goal of ATC is to direct aircraft safely to their destination while minimally interfering
with their planned trajectories. This involves maintaining a minimum separation between
the aircraft, detecting impending conflicts which are violations of the minimum separation,
and resolving the conflicts by changing the trajectories subject to certain constraints and
priorities. The typical safety requirements in 3-D (sometimes referred to as “separation
standard”) involve horizontal and vertical separations are shown in Fig. 1.28. The protected
airspace is a thin cylinder usually 2,000 feet high and diameter of 5 nautical miles. This shape
is sometimes called a “puck” due to its similarity with the hokey puck. Conflict resolution is
an instance of the theoretical Asteroid Avoidance Problem (AAP) which turns out in general
to be NP-Hard [1]. In ATC for a number of good reasons it is preferred to resolve conflicts if
possible without altitude changes. An algorithm for planar (i.e. no altitude change) conflict
detection and resolution in ATC (USA patent # 5,058,024) was proposed in conjunction with
the design competition for the new ATC system (AAAS). It was tested on some complex
groupings of flying aircraft (“complex scenarios” for short) which were provided by the USA
Federal Aviation Administration [10]. We’ll give the rudiments of the algorithm and then

36

Figure 1.30: Six aircraft flying at the same altitude. These positions are at a certain time
(taken as 0 seconds and shown on the left-hand-corner). Circles centered at each aircraft
are the protected airspaces with the diameter being the minimum allowable separation. The
arrows represent the velocities.

Figure 1.31: Conflicts, indicated by overlaping circles, within the next 5 minutes.

37

Figure 1.32: Conflict Intervals I1k, k = 2, 3, 4, 5, 6, with respect to aircraft # 1 for the
complex scenario shown in Fig. 1.30 and the conflicts shown in Fig. 1.31. The path of
aircraft # 1 is shown as a point on the vertical line. Lowest point shown is 3B and represents
the path of which Back-scrapes # 3 and next to it is the time when this occurs. In general,
B or F denotes back or front-scrapes for the indicated aircraft # and the time at which the
scrape occurs.

apply it to one of the complex scenarios.

Given a set of aircraft considered as points moving with a constant velocity, if the mini-
mum separation to be maintained is denoted by d then the protected airspaces, for the planar
case, are circles with radius d/2 centered at each aircraft and moving with the same velocity.
The ensuing conflict and resolution analysis is done first for a pair of circles and then for
an arbitrary number. There is no loss of generality in reducing this to the point-circle con-
figuration above (by shrinking one circle to) a point(the aircraft itself), ACk with velocity
~Vk while the circle Ci for the aircraft ACi has double the original radius and velocity ~Vi as
shown in Fig. 1.29. Here the velocities are assumed to be constant as when the aircraft are
flying en route having reached their cruising altitude. A line `, taken here for convenience to
be vertical, going through ACk is shown at the initial time t = 0. On ` a vector field is de-
fined with the points on the line now being considered as “particles” endowed with the same
velocity ~Vk as ACk for t ≥ 0. It is clear that there exists exactly one such particle, initially

38

Figure 1.33: Conflict resolution with parallel-offset maneuvers. Three pairs of tangent circles.

in position (k0
1 , b0

ik) which just “scrapes” (i.e. is tangent) to the circle Ci at time tbik
. Sim-

ilarly, there exists a unique particle initially in position (k0
1 , f 0

ik) which exactly scrapes Ci

from the front. The particles starting above b0
ik pass the circle safely from the back, particles

below f 0
ik) pass in the front while those in the interval Iki = [f 0

ik , b0
ik] eventually intersect

the circle. This provides the conflict detection for of any aircraft on ` only those on Iki will
be in conflict with ACi. For lack of a better name Iki is called the conflict interval of i with
respect to k. There is more information in Fig. 1.29 worth pointing out. The parallelogram
enclosing Ci has two sides parallel to ~Vi and two parallel to ~Vki the velocity of k relative to
i. That is an observer sitting on Ci will see the particles passing by with velocity ~Vki. Only
the particles entering this parallelogram will intersect Ci and these are the particles on Iki.
So the particle scraping the circle from the back will be seen by such an observer traveling
on the top (back) tangent to Ci and touching it at the point Bjk. That, in fact, is the point
where the back scrape will occur. The intersection of this side with ` occurs precisely at
the point (k0

1 , b0
ik) (why?) providing the particle responsible for the back-scrape. Since

this particle has velocity ~Vk, the intersection of a line in this direction with the path of Bjk

(which has velocity ~Vi) must be the position where the back-scrape occurs from which, in
turn, the time tbjk

can be found. All this is easily seen by noticing that the triangle so formed
is similar to the triangle shown in the upper-left with the vector subtraction. The situation
is exactly the same vis-a-vis the front scrape. In this way, running through all the indices
i = 1, . . . , N i 6= k the corresponding conflict intervals can be found.

In ‖-coords where the paths of the particles on Iki are transformed into points. These
paths all being parallel they are represented by points on will, in turn, correspond to an
interval, say Īki on a vertical line at x = 1

1−m
with m being the slope of ~Vk. The situation

becomes more interesting when this is considered ∀i = 1, . . . , N i 6= k. Since m is still the

39

Figure 1.34: A triple tangency

same all the corresponding Īki fall on the same vertical line. Let’s see how this works on
one of the complex scenarios (# 8) from [10] where 10 aircraft are involved. What makes
it “interesting” is that 6 of these, shown in Fig. 1.30 are flying at the same altitude and
somewhat menacingly towards each other; several impending conflicts are seen in Fig. 1.31.
The corresponding conflict intervals are shown in Fig. 1.32 showing the paths for the Back-
scrapes and Front-scrapes of the aircraft #’s 2, . . . , 6 and the times when they occur. The
times are computed from eq. (1.45) or directly from its point representation in ‖-coords.

Conflict Resolution

Now the fun begins! Let’s denote by k̄ the point representing the path of ACk. Clearly,
ACk is conflict with aircraft # i ⇔ k̄ ∈ Iki. For example, from Fig. 1.32 it is easily seen
that aircraft # 1 is in conflict with # 2 and # 3 and no others. The challenge is to resolve
the conflicts with the allowable maneuvers which in our case are parallel offsets which are
commonly used en route. Such a maneuver consists of :

1. a turn (left or right) which is bounded above say by a θMAX – that is a turn which is
relatively “small”,

2. followed by a relatively short straight path – this is the “offset”,

3. then a second turn returning the aircraft to a path parallel to the original one (i.e. the
same heading). The new path is not allowed to be “too far” from the original – i.e.
the distance between the path is bounded above say by a s.

4. At all times the aircraft’s speed i.e. |~V | is constant – that is no slow-downs or speed-ups
are allowed even during the maneuvers.

40

The turn here is idealized in the sense that it is considered “instantaneous” in time and
occurs at a point in space. All this can be adjusted to more realistic models based on the
capabilities of various airplanes, policies for various airlines and air-sectors, as well as many
other constraints and priorities like time-to-conflict (“validation time”) etc. all of which are
beyond our scope here. The strategy for conflict resolution then is to use parallel offset
manuevers subject to the given constraints in order to redirect the aircraft to conflict-free
paths. The conflict intervals are well-suited for this task. Since eventually the new path is
parallel to the original the idea, when # j is in conflict with some aircraft, is to find a the
nearest conflict-free path, say j̄ ′, and check to see if under the constraints the maneuvers
allow # j to reach this path prior to the scrape. That is we want # j to behave like the
particle originaly with path j ′ in a neighborhood of the scrape. Specifically, for # 1 we
see in Fig. 1.32 that a good candidate is the path of the particle causing the back-scrape
3B. This is found by taking the union of all conflict intervals containing 1̄ which is also an
interval (from a basic theorem in topology) and examining the closest end-point. In general,
the new interval’s end point may lie on conflict intervals not included in the union, such as
3F ∈ I14, in which case this intervals are added to the union until a conflict-free path is
found. This process terminates since there is a finite number of intervals. Then the closest
end-point is checked to see if it is feasible; that is if the aircraft in conflict – such as # 1 here
– can be redirected to the new path subject to the constraints. It is not difficult to apply
the maximum-offset constraint.

To see how equal-speed maneuvers can be achieved refer again to Fig. 1.32 where the
turn-angle to maneuver-speed relation is illustrated. When ACk makes a turn with angle α
an isosceles triangle is formed so that, after the turn, the aircraft traveling with speed |~Vk|
arrives at J at the same time as the particle originaly at f 0

ik for they both travel with the

Figure 1.35: Resolution in 3-D

41

same speed over an equal distance. Hence after the point J ACk, now in its new path, mimics
the behavior of the particle – namely the scrape – in the neighborhood of some circle. From
this picture we can also see that turns of more or less than α will reach the path of f 0

ik sooner
or later than the particle necessitating a slow-down or speed-up by ACk to accomplish the
scrape as the particle. Of course, a choice of lines other than the vertical provides more and
different options and this is exploited in the implementation.

The general AAP is NP-Hard so even its specializations may have very high complexity.
Since Conflict Resolution requires a real-time solution, one way to handle the need for fast
response is by cascading the algorithm in various levels, which we briefly outline below, of
increasing complexity and power. Starting with the first level (having the lowest complexity),
the set of aircraft is processed by successive levels until either a resolution is found or no
resolution is found by the highest level though, in in our experience, satisfactory resolutions
were found at the lowest level. It is, of course, even better to run the algorithms for the
various levels in parallel. The algorithm is greedy and in testing we found different resolutions
are found by the various levels. Different resolutions (or no resolutions) may also be found by
reordering aircraft on input. Listing the aircraft in order of decreasing number of conflicts,
they are involved in, turns out to be a ”good” ordering. Other ordering heuristics, which also
consider the time-to-conflict, have been tried with varying success. When several resolutions
for a conflict scenario are available rating them as to their ”desirability” has turned out to
be very elusive and very interesting problem.

In the simplest case (“simple rules”) an aircraft in conflict, say ACj is placed on the path
found as was indicated above satisfying all the constraints. This is repeated with the updated
(due to the repositioning of ACj) conflict intervals. If this works out for all the aircraft in
the input list a resolution is found, otherwise the next level is invoked. The computational
worst-case complexity for this level is O(N 2logN) where N is the number of aircraft.

When the simple rules level finds no resolution for a particular aircraft ACk a sweep of
the conflict intervals determines which aircraft prevented it (i.e. blocking it) from being
resolved – and there may be more than one. A criterion is applied in order to chose the
“most troublesome” aircraft blocking the resolution,temporarily removing it and resolving
the conflicts, if possible, in this way using the simple rules. Such potential conflict resolution
is provisionally taken and a resolution for the remaining, including the one that was removed
is attempted. If successful, the resolution spawns additional maneuvers for the blocking
aircraft one at a time. This backtracking can be nicely implemented with recursion.

The worst-case complexity of the recursion is exponential. In order to terminate, the
maximum number of times R which the removal of a blocking aircraft is allowed to take
place is fixed a priori yielding the maximum complexity is O(NR+1logN). It was also found
profitable to experiment with different reordering heuristics rather than invoke backtracking.
Though frequently successful, no clear scenario independent criteria for the reordering were
found. However, using several particle lines rather than one lead to resolutions for the vast
majority of scenarios tried using only the simple rules. For equal-speed maneuvers, every
particle line corresponds to a specific maneuver turn. In addition to using “idealized” turns
here, a pilot can not execute a turn with absolute precision. So a certain tolerance say θ for
the error is involved, So placing the particle lines in multiples of θ and covering in this way
the allowable turn range (i.e. ± θMAX) is a way to check for all implementable resolutions
without increase in the time complexity.

42

Let us illustrate all this with the chosen scenario shown in Fig. 1.30. To “judge” it’s
difficulty in a practical way an expert Air Traffic controller was asked to resolve it. He
could only resolve 4 aircraft without altitude change. Even that required a great deal of
time and the solution was certainly not “real-time”. Our algorithm was able to resolve all
conflicts without altitude changes using only two particle lines the resolution being shown
at two time-frames in Figs. 1.33 and 1.33. There are several instances of tangent circles.
This is because the algorithm is built to utilize the scrapes and which, in turn, result in
minimally disturbing the aircraft from their original paths. The figures hopefully illustrate
the difficulty in finding constrained maneuvers which allow the circles to possible touch but
always exquisitely avoiding overlapping.

As an interesting aside notice, from Fig. 1.32 that ∩6
k=2I1k = [4F, 6F]. So any point on

the interval [4F, 6F] represents a path which eventually intersects each one of the circles.
This is an instance of the One-Shot Problem (OSP) which in general is NP-Complete [11].
In 1989 another algorithm using particle fields on the whole plane, rather than just particle
lines, was derived (USA patent # 5,173,861). Also it accomplished some resolutions with
altitude changes Fig. 1.35. It was reported5 that the U.S.A. Air Force is testing the use
of these algorithms for positioning several aircraft in formation flying [4] and for conflict
detection and resolution [14].

Exercises

1. In Fig. 1.32 most of the associated times with the scrapes increase as the point rep-
resenting the scrape path is higher on the vertical line. Provide the conditions needed
for these times to increase or decrease monotonicaly.

2. Provide the formulation for using several line fields `(θ) at different angles θ with the
horizontal axis. Describe how you would efficiently construct the corresponding conflict
intervals and their functional dependence on θ.

3. Define a particle field on the whole plane – as was done only for `. Find the allowable
particle regions (i.e. the set of particles satisfying the constraints) associated with:

(a) Maximum offset

(b) Maximum Angle

(c) Conditions where the approach may fail

4. Find the conditions where the approach of “particle lines” fails

5. Formulate the “one-shot problem” carefully. Describe conditions where the conflict
intervals can be used interactively to find one-shot solutions.

.

5I am grateful to D.Sobiski for this information.

43

44

Index

air traffic control
collision avoidance , 36–40
conflict intervals, 39
conflict resolution , 40–43
information display, 33
particle fields , 36–43

air traffic control , 32–43

multidimensional lines
indexed points

identification, 16
air traffic control , 32–43
construction algorithms

an example, 15
construction algorithms , 14–16
distance & proximity

L2 minimum distance – monotonicity
with dimension , 30, 31

L2 minimum distance – monotonicity
with dimension , 27

L2 versus L1 minimum distance, 31
constrained L1 distance , 25–27
intersecting lines, 20
minimum distance between lines ,

23–31
non-intersection , 22–31

distance & proximity , 20–31
indexed points

3-point collinearity , 6–8
arbitrary parametrization, 11
dummy index, 12

representation
adjacent variables , 1–3
base variable, 4
general case , 11–13
transforming positive to negative

slopes , 17–19
two point form , 5–6

two point form continued , 13
representation , 1–20
rotations ↔ translations duality, 20

parallel coordinates
air traffic control , 32–43
multidimensional lines

representation , 6
multidimensional lines , 1–43
representation mapping I , 9–10

45

References

[1] J. Canny and J. Reif. New Lower Bound Techniques for Robot Motion Planning Prob-
lems, in Proc. of 28th Symp. on Found. of Comp. Sci. IEEE Comp. Soc., Washington,
D. C., 1987.

[2] A. Chatterjee. Visualizing Multidimensional Polytopes and Topologies for Tolerances.
Ph.D. Thesis, Dept. Comp. Sci., Univ. of S. Calif., 1995.

[3] S. Even. Graph Algorithms. Computer Science Press, Rockville MD, 1979.

[4] LORAL FSD. Test Report for the Quidk-Look FLight Demonstration of the IntraFor-
mation Positioning System, Document Nos. 93-A37-002, Contract f33615-90-C-3609.
LORAL Federal Systems Co, Oswego, 1994.

[5] H. S. Guyford and J.J. Haggerty. Flight – Life Science Library. Time Inc., New York,
1965.

[6] IEEE. The faa’s advanced automation program — special issue. IEEE Computer J.,
20-2, 1987.

[7] A. Inselberg. N-Dimensional Graphics, Part I – Lines and Hyperplanes, IBM LASC
Tech. Rep. G320-2711, 140 pages. IBM LA Scientific Center, 1981.

[8] A. Inselberg and B. Dimsdale. Multidimensional lines i: Representation. SIAM J. of
Applied Math., 54-2:559–577, 1994.

[9] A. Inselberg and B. Dimsdale. Multidimensional lines ii: Proximity and applications.
SIAM J. of Applied Math., 54-2:578–596, 1994.

[10] R. O. Lejeune. Government Provided Complex Scenarios for the Advanced Automated
System Design Competition Phase, MTR-85W240. MITRE Co, McLean, Virginia, 1985.

[11] N. Megido. On the Complexity of some Geometric Problems in Unbounded Dimension,
in IBM Res. Rep. RJ5744(58033). IBM Research, 1987.

[12] J. W. Moon. Various Proofs of Cayley’s Formula for Counting Trees, Seminar in Graph
Theory, F. Harary (ed.). Holt, Rinehart & Winston, 1967.

[13] J. Riordan. An Introduction to Combinatorial Analysis. John Wiley, New York, 1958.

[14] D. J. Sobiski. Collision Detection and Collision Avoidance, Document Nos. 196A798.
LORAL Federal Systems Co, Oswego, NY, 1995.

46

