PARALLEL COORDINATES: VISUAL Multidimensional Geometry and its Applications

Alfred Inselberg(©1992, 2004)
Senior Fellow San Diego SuperComputing Center, CA, USA
School of Mathematical Sciences
Tel Aviv University, Israel aiisreal@post.tau.ac.il
\&
Multidimensional Graphs Ltd
Raanana 43556, Israel
COPYRIGHTED MATERIAL ACCESS AND USE BY PERMISSION ONLY

Chapter 1

The Plane with Parallel Coordinates

1.1 The Fundamental Duality

Figure 1.1: Points on the plane are represented by lines.
\mathcal{P} oints on the $x_{1} x_{2}$-plane are represented in parallel coordinates (abbreviated by $\|$-coords) by a line on the $x y$-plane, as shown in Fig. 1.1. To find out how a line might be represented a set of points on a line is selected, as shown in the top right of Fig. 1.2. The corresponding lines are plotted in $\|$-coords, shown in the top left of the figure, intersect at a point! Remarkably, this is true in general and for the line

$$
\begin{equation*}
\ell: x_{2}=m x_{1}+b, \tag{1.1}
\end{equation*}
$$

the corresponding point is

$$
\begin{equation*}
\bar{\ell}:\left(\frac{d}{1-m}, \frac{b}{1-m}\right) \quad m \neq 1 \tag{1.2}
\end{equation*}
$$

where the distance between the parallel axes is taken as d. With reference to the later chapters we observe that the inter-axis distance is directed so that if the axes are interchanged the sign of d becomes negative. The point ℓ is said to represent the line ℓ. It is evident that a point \leftrightarrow line duality ${ }^{1}$ is at work here and which must be properly considered in the Projective

[^0]

Figure 1.2: In the plane parallel coordinates induce a point \longleftrightarrow line duality.
\mathbb{P}^{2} rather than the Euclidean \mathbb{R}^{2} plane. In eq. (1.2) as $m \rightarrow 1, \bar{\ell} \rightarrow \infty$ but in a constant direction. This is further clarified in Fig. 1.3 where the lines representing the points of a line with $m=1$ are parallel with slope $\frac{b}{d}$. For this reason, a line with $m=1$ is represented by the ideal point in the direction having slope $\frac{b}{d}$. The projective plane allows the inclusion of lines with $m=1$ to complete the 1-1 correspondence between lines and points $\ell \leftrightarrow \bar{\ell}$ as given by eqs. 1.1 and 1.2 .

From now on the $x_{1} x_{2}$ and $x y$ planes are considered as two copies of the projective plane \mathbb{P}^{2} and, in general, an object S in the $x_{1} x_{2}$-plane is represented by an object in the $x y$-plane denoted by \bar{S}. Expressing eq. 1.2, in homogeneous coordinates with triples within [...] and triples within (...) denoting line and point coordinates respectively, we get that

$$
\begin{equation*}
\ell:[m,-1, b] \longrightarrow \bar{\ell}:(d, b, 1-m) . \tag{1.3}
\end{equation*}
$$

It is clear that lines with $m=1$ are represented by the ideal points $(d, b, 0)$. The horizontal position of $\bar{\ell}$ depends only on the slope m as illustrated in Fig. 1.4. Specifically, for vertical lines ℓ (i.e. $m=\infty$) $\bar{\ell}$ is on the y -axis, while for horizontal lines ℓ (i.e. $m=0$), $\bar{\ell}$ is on the x -axis. Lines with negative slope are represented by points within the parallel axes, lines

Figure 1.3: Lines representing points on the line $x_{2}=x_{1}+b$.
with $0<m<1$ with points to the right of the \bar{X}_{2}-axis and lines with $1<m$ with points to the left of the \bar{X}_{1}-axis. Among other things, this points out the reason for representing a point P by the whole line \bar{P}, rather than just the segment between the parallel axes, for $\bar{\ell}$ may lie outside the strip between the axes.

The dependence of the horizontal position of $\bar{\ell}$ only on m shows that parallel lines are represented by points on the same vertical line. This property, as we see later, turns out to be very useful. Therefore, the ideal point P_{m}^{∞} is represented by the vertical line $x=\frac{1}{1-m}$ shown in Fig. 1.5.

Figure 1.4: The horizontal position of $\bar{\ell}$ depends only on the slope m of ℓ. See eqs. (1.4) and (1.5) to understand the case $m= \pm \infty$.

For complete generality the line description below is used

$$
\begin{equation*}
\ell: a_{1} x_{1}+a_{2} x_{2}+a_{3}=0 \tag{1.4}
\end{equation*}
$$

and for $a_{2} \neq 0, m=-\frac{a_{1}}{a_{2}}$ and $b=-\frac{a_{3}}{a_{2}}$, providing the correspondence :

$$
\begin{equation*}
\ell:\left[a_{1}, a_{2}, a_{3}\right] \longrightarrow \bar{\ell}:\left(d a_{2},-a_{3}, a_{1}+a_{2}\right) \tag{1.5}
\end{equation*}
$$

In turn this specifies a linear transformation between the triples ℓ and $\bar{\ell}$:

$$
\bar{\ell}=A \ell \quad, \quad \ell=A^{-1} \bar{\ell}
$$

where ℓ and $\bar{\ell}$ are considered as column vectors. The 3×3 matrix is :

$$
A=\left[\begin{array}{rrr}
0 & d & 0 \tag{1.6}\\
0 & 0 & -1 \\
1 & 1 & 0
\end{array}\right], A^{-1}=\left[\begin{array}{rrr}
-1 / d & 0 & 1 \\
1 / d & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

which can be easily computed by taking 3 simple triples, like for example, $[1,0,0],[0,1,0]$ and $[0,0,1]$ for ℓ.

Since $\ell \rightarrow \bar{\ell}$ must be considered on the projective plane we can verify that the ideal line $l_{\infty}=[0,0,1]$ is mapped into $\bar{\ell}_{\infty}=(0,1,0)$, the ideal point in the vertical direction; this being the "intersection" of all the lines representing the ideal points which we have already seen are vertical. It is clear then that all lines of the projective plane P^{2} are mapped into points of P^{2} as given by eq. (1.6). Below we summarize the various cases :

$$
\left\{\begin{array}{ccc}
\ell & \rightarrow & \bar{\ell} \\
{\left[a_{1}, 0, a_{2}\right], m=\infty} & \rightarrow & \left(0,-a_{3}, a_{1}\right), \text { on the } y-\text { axis } \\
{\left[0, a_{2}, a_{3}\right], m=0} & \rightarrow & \left(d,-a_{3}, 1\right), \text { on the } x-\text { axis } \\
{\left[-a_{2}, a_{2}, a_{3}\right], m=1} & \rightarrow & \left(1,-\frac{a_{3}}{d a_{2}}, 0\right), \text { ideal point slope }-\frac{a_{3}}{d a_{2}}\left(\frac{m}{d}\right) \\
{[0,0,1], \ell_{\infty}} & \rightarrow & (0,1,0), \bar{\ell}_{\infty} \text { vertical direction }
\end{array}\right\}
$$

Figure 1.5: Under the duality parallel lines map into points on the same vertical line. On the projective plane model, the great semi-circles representing the lines share the same diameter since the lines have the same ideal point.

For the other half of the duality, using homogeneous coordinates we look carefully into the point $P \rightarrow \bar{P}$ line correspondence illustrated in Fig. 1.6. The point $P=\left(p_{1}, p_{2}, p_{3}\right)=$ $\left(p_{1} / p_{3}, p_{2} / p_{3}, 1\right), p_{3} \neq 0$, is represented in the $x y$-plane by the line \bar{P} with slope $\left(p_{2}-p_{1}\right) / d p_{3}$. Hence,

$$
\bar{P}:\left(d p_{3}\right) y=\left(p_{2}-p_{1}\right) x+d p_{1}
$$

so that

$$
\begin{equation*}
P=\left(p_{1}, p_{2}, p_{3}\right) \longrightarrow \bar{P}=\left[\left(p_{1}-p_{2}\right), d p_{3},-d p_{1}\right] . \tag{1.7}
\end{equation*}
$$

The ideal point $P_{m}^{\infty}=\left(p_{1}, p_{2}, 0\right)=\left(1, p_{2} / p_{1}, 0\right)$ has direction with slope $m=p_{2} / p_{1}$, therefore, $\bar{P}_{m}^{\infty}=\left[\left(p_{1}-p_{2}\right), 0,-d p_{1}\right]=[1-m, 0,-d]$ which is the vertical line at $x=d /(1-m)$ as expected (see also Fig. 1.4). Considering P and \bar{P} as column vectors we can write the above correspondence as a linear transformation:

$$
\bar{P}=B P, P=B^{-1} \bar{P}
$$

with

$$
B=\left[\begin{array}{rrr}
-1 & 1 & 0 \tag{1.8}\\
0 & 0 & -d \\
d & 0 & 0
\end{array}\right], B^{-1}=\left[\begin{array}{rrr}
0 & 0 & 1 / d \\
1 & 0 & 1 / d \\
0 & -1 / d & 0
\end{array}\right]
$$

So, in $\|$-coords there is a fundamental Point \rightleftharpoons Line duality, formalized by Equations (1.5) and (1.7). Curiously for $d=1, A^{T}=B^{-1}$.

Altogether then we have the transformations : line $\ell \xrightarrow{A} \bar{\ell}$ point, and point $P \xrightarrow{B} \bar{P}$ line. We can continue as $\ell \xrightarrow{A} \bar{\ell} \xrightarrow{B} \overline{\bar{\ell}}$ but in general the line ℓ is not the same as the line $\overline{\bar{\ell}}$. That is $B(A \ell) \neq \ell$ and likewise $A(B P) \neq P$ (See exercises 2,3). By the way, the matrices

Figure 1.6: A point $P=\left(p_{1}, p_{2}, p_{3}\right)=\left(p_{1} / p_{3}, p_{2} / p_{3}, 1\right), p_{3} \neq 0$, is represented by a line \bar{P}.

Figure 1.7: Motivation for the notation \bar{X}_{i} of the axes, note the position of the \bar{x}_{i}. Two lines $x_{1}=a, x_{2}=b$ on the point P (left) whose images are two points \bar{a}, \bar{b} on the line \bar{P} (right). The axis \bar{X}_{1} represents the ideal point in the vertical direction (hence \bar{x}_{2} is on it) and \bar{X}_{2} in the horizontal (with \bar{x}_{1} on it).

Figure 1.8: Hyperbola(point-curve) \rightarrow Ellipse(line-curve).
A, B are quite sparse (i.e. have lots of zeros) and usually taking $d=1$ so the computation to and from $\|$-coords is not too costly.

A few words about the notation shown in Fig. 1.7 are in order. Each of the axes $\bar{X}_{i}, i=1,2$ represents a family of parallel lines. Specifically, \bar{X}_{i} represents the parallel lines $x_{i}=$ constant or the ideal point in the direction of x_{i}. Note the representation of x_{1} and x_{2} above.

The image(representation) \bar{r} of a curve r can be obtained as the envelope ${ }^{2}$ of the lines representing the points of r. This is distinguished by referring to the original curves as pointcurves and their images as line-curves an example is shown in Fig. 1.8. Line-curves will be

[^1]constructed from the envelope of the family of curves (for an old but very nice treatment of envelopes see [1]). In fact, the point $\bar{\ell}$ can also be found in this way to be the envelope of the infinite family of lines \bar{A}. In the chapter on Curves it is seen that
$$
\text { point - curve } \leftrightarrow \text { point - curve }
$$
directly by a transformation between the $x_{1} x_{2}$ and $x y$ projective planes [3]. Additional related topics can be found in [2].

Exercises

1. Verify eq. (1.2). Hint: The lines $\bar{A}_{i}, i=1,2$ are on the points $\left(0, a_{i}\right),\left(d, m a_{i}+b\right)$ of the $x y$-plane and $\bar{\ell}=A_{1} \cap A_{2}$.
2. Apply $\ell \xrightarrow{A} \bar{\ell} \xrightarrow{B} \overline{\bar{\ell}} \ldots$. Does the pattern repeat? i.e. $\ell \rightarrow \ldots \rightarrow \ell$ after a finite number of transformations. What is meant here is the application of the line-topoint transformation expressed by the matrix A, then the point-to-line transformation expressed by the matrix B etc.
3. Repeat for $P \xrightarrow{B} \bar{P} \xrightarrow{A} \overline{\bar{P}} \ldots$. Does this pattern repeat?

1.2 Transformations under the duality

1.2.1 Rotations and Translations

\mathcal{W} ith reference to Fig. 1.9, a line ℓ originaly horizontal, shown in position ℓ_{o}, is rotated counterclockwise about one of it's points which for convenience is taken as the origin O. Under the duality, the corresponding path of $\bar{\ell}$ is along the line \bar{O} since in any of its rotated positions (say $\ell_{1}, \ell_{2}, \ell_{3}$ etc.) ℓ still contains the point O. To better understand the corresponding motion of the point $\bar{\ell}$, recall that in the projective plane a line behaves like a "closed curve" (see Fig. 1.5) "joined" at its ideal point. Hence due to the counterclockwise rotation, the point $\bar{\ell}$ moves in the direction of increasing x (i.e. to the right) until the line's slope is 1 when $\bar{\ell}$ passes through the ideal point and "returns" to the Euclidean plane now on the left of the X_{1}-axis but still moving to the right. Dually, a translation of point A in the positive direction along a line ℓ (taken for convenience coincident with the x_{1}-axis) corresponds to the rotation of the line \bar{A} in the clockwise direction. There are corresponding dualities and quite useful in higher dimensions which we will meet in due course.

1.2.2 Recognizing Orthogonality

There are two more transformations worth presenting at this stage.

1. $R_{\frac{1}{2}}$, Reflection about the line $x=\frac{1}{2}$. In the $x y$-plane the reflection of the vertical line \bar{P}_{m}^{∞} (the set of points representing the lines with slope m), about the line $x=\frac{1}{2}$ is the line $\bar{P}_{\frac{1}{m}}^{\infty}$ (the set of points representing the lines with slope $\frac{1}{m}$), as shown in Fig. 1.10.

Figure 1.9: Duality between rotations and translations

That is, such a reflection finds the image of the lines with the reciprocal of the slope or

$$
R_{\frac{1}{2}}\left(\bar{P}_{m}^{\infty}\right)=\bar{P}_{\frac{1}{m}}^{\infty} .
$$

2. $C_{\frac{1}{2}}$, Circle Inversion. Consider the tangent from the point $\bar{\ell}_{o}=\bar{P}_{m}^{\infty} \cap x$-axis to the circle centered at $\left(\frac{1}{2}, 0\right)$ at the point $\bar{\ell}_{1}$ and radius $\frac{1}{2}$, see Fig. 1.11. Then $x\left(\bar{\ell}_{1}\right)=$ $\frac{1}{(1+m)} C_{\frac{1}{2}}=\bar{P}_{-m}^{\infty}$.

With the composition

$$
R_{\frac{1}{2}} C_{\frac{1}{2}}\left(\bar{P}_{m}^{\infty}\right)=\bar{P}_{-\frac{1}{m}}^{\infty}
$$

the image of the lines orthogonal to the original ones is found. The x-distances a,b (shown in figures 1.10 and 1.11) of \bar{P}_{m}^{∞} from $\left(\frac{1}{2}, 0\right)$ are:

$$
a=-\frac{(1-m)}{2(1+m)}, b=-\frac{1+m}{2(1-m)}
$$

respectively. Therefore, $a b=1 / 4$ is the invariance for the corresponding two lines (or families of lines) to be mutually orthogonal. All this shows that information on orthogonality is not "lost" when using ||-coords.

Figure 1.10: Reflection about the line $\frac{1}{2}$

1.2.3 A Preview

\mathcal{A} glimpse of what lies ahead is seen in Fig. 1.12. In part (a) we see a square with unit side in Cartesian and dually in parallel coordinates. Note that the edge $\overline{A B}$ is the point represented by the intersection of the lines \bar{A} with \bar{B} representing the corresponding two vertices. The situation becomes more interesting in part (b) where a cube with unit side and its image are shown. The collection of all vertices has coordinates which are all possible ordered triples with 0's and 1's. The image of the cube consists of two adjacent copies of the square's image. Note the polygonal line indicated as the image of the vertex $E=(1,0,0)$ for example. It is clear that all of the cube's vertices are included in the image. Also the

Figure 1.11: Circle Inversion

Figure 1.12: (a)Square,(b) 3-D cube (c) 5-D hypercube all with unit side
connection with the square as well as the symmetry of the cube are "suggested", but albeit not as of yet clearly understood, in the "double-square" image. In due course, we will see that this image contains all the information about the cube; namely, the edges, faces as well as inside and outside. Finally, whereas we do not know how to show a hypercube in 5 -D or higher in Cartesian coordinates, there is no problem doing so in parallel coordinates as we can see in part (c) of the figure and still, as we shall eventually show, with all the information there. We will also see that showing objects with high-symmetry by repetitive patterns is more general than the hypercube. Now the reason this works is that our duality has nice generalizations to higher dimensions which is our next topic. Though the ensuing the development is carried out in the projective plane, it works out that we can still use all the Euclidean notions of angle, distance etc as long as ideal elements are not involved.

Exercises

Draw in Cartesian and Parallel coordinates a point $P=\left(p_{1}, p_{2}\right)$ and a line ℓ before and after :

1. the translation of the origin to the point $\left(a_{1}, a_{2}\right)$,
2. the reflections about the x_{1} and x_{2} axes,
3. the rotation of the axes about the origin by an angle θ,
4. the composition of the translation followed by the rotation.

Index

duality
\mathbb{R}^{2} - slope and x-coordinate relation, 3
point \leftrightarrow line in $\mathbb{R}^{2}, 1-11$
point \leftrightarrow line
horizontal position of $\bar{\ell}, 2$
line \rightarrow point linear transformation, 4
point \rightarrow line linear transformation, 5
point-curves \& line-curves, 6
Projective plane, 2
recognizing orthogonality , 7
rotation \leftrightarrow translations, 7
transformations, 7-9
envelopes, 6
parallel coordinates
$\mathbb{R}^{2}, 1-11$
curves, 6
hypercube, 9
notation in \mathbb{R}^{2}
bar, point, line, 6
orthogonality, 7
parallelism, 3
point \leftrightarrow line duality in $\mathbb{R}^{2}, 1-11$

References

[1] V. G. Boltyanskii. Envelopes, R.B.Brown translator (original in Russian). Pergamon Press, New York, 1964.
[2] A. Inselberg. N-Dimensional Graphics, Part I - Lines and Hyperplanes, IBM LASC Tech. Rep. G320-2711, 140 pages. IBM LA Scientific Center, 1981.
[3] A. Inselberg. The plane with parallel coordinates. Visual Computer, 1:69-97, 1985.

[^0]: ${ }^{1}$ See portion on Duality in the "Geometry Background" chapter.

[^1]: ${ }^{2}$ As explained in the Chapter on Envelopes

