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Chapter 1

The Plane with Parallel Coordinates

1.1 The Fundamental Duality

<

Figure 1.1: Points on the plane are represented by lines.

Points on the z;zo-plane are represented in parallel coordinates (abbreviated by ||-coords)
by a line on the xy-plane, as shown in Fig. 1.1. To find out how a line might be represented a
set of points on a line is selected, as shown in the top right of Fig. 1.2. The corresponding lines
are plotted in [|-coords, shown in the top left of the figure, intersect at a point! Remarkably,
this is true in general and for the line

{:x9 =mxy +0, (1.1)

the corresponding point is

- d b

b (——,— m#1, 1.2
where the distance between the parallel axes is taken as d. With reference to the later
chapters we observe that the inter-axis distance is directed so that if the axes are interchanged
the sign of d becomes negative. The point ¢ is said to represent the line £. It is evident that a
point < line duality! is at work here and which must be properly considered in the Projective

1See portion on Duality in the “Geometry Background” chapter.
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Figure 1.2: In the plane parallel coordinates induce a point «— line duality.

P2 rather than the Euclidean R? plane. In eq. (1.2) as m — 1 ,¢ — oo but in a constant
direction. This is further clarified in Fig. 1.3 where the lines representing the points of a
line with m = 1 are parallel with slope 2. For this reason, a line with m = 1 is represented
by the ideal point in the direction having slope g. The projective plane allows the inclusion
of lines with m = 1 to complete the 1-1 correspondence between lines and points ¢ < £ as
given by egs. 1.1 and 1.2.

From now on the x1x9 and xy planes are considered as two copies of the projective plane
P? and, in general, an object S in the x,z5-plane is represented by an object in the zy-plane
denoted by S. Expressing eq. 1.2, in homogeneous coordinates with triples within [ ... ]
and triples within ( ... ) denoting line and point coordinates respectively, we get that

0:m,—1,b] — £ :(d,b,1 —m). (1.3)

It is clear that lines with m = 1 are represented by the ideal points (d,b,0). The horizontal
position of ¢ depends only on the slope m as illustrated in Fig. 1.4. Specifically, for vertical
lines ¢ (i.e. m = oc) £ is on the y-axis, while for horizontal lines ¢ (i.e. m = 0), £ is on the
x-axis. Lines with negative slope are represented by points within the parallel axes, lines
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Figure 1.3: Lines representing points on the line o = 21 + b.

with 0 < m < 1 with points to the right of the X,-axis and lines with 1 < m with points
to the left of the X;-axis. Among other things, this points out the reason for representing a
point P by the whole line P, rather than just the segment between the parallel axes, for ¢
may lie outside the strip between the axes.

The dependence of the horizontal position of ¢ only on m shows that parallel lines are
represented by points on the same vertical line. This property, as we see later, turns out to

be very useful. Therefore, the ideal point P:° is represented by the vertical line x = ﬁ
shown in Fig. 1.5.
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Figure 1.4: The horizontal position of ¢ depends only on the slope m of £. See eqs. (1.4)
and (1.5) to understand the case m = +oc.



For complete generality the line description below is used

I 121 + Aoy + ag = 0 (14)
and for as #£ 0, m = —% and b = —%, providing the correspondence :
a a
0 a1, az,as) — £ : (day, —as, a; + as). (1.5)

In turn this specifies a linear transformation between the triples ¢ and ¢ :
(=Al , (=AY,

where ¢ and ¢ are considered as column vectors. The 3 x 3 matrix is :

0d 0 ~1/d 0 1
A=100 —-1|,4"= 1/d 0 0 |. (1.6)
11 0 0 -1 0

which can be easily computed by taking 3 simple triples, like for example, [1,0,0], [0,1,0] and
[0,0,1] for ¢.

Since ¢ — ¢ must be considered on the projective plane we can verify that the ideal line
lso = [0,0, 1] is mapped into £, = (0, 1,0), the ideal point in the vertical direction; this being
the “intersection” of all the lines representing the ideal points which we have already seen
are vertical. It is clear then that all lines of the projective plane P? are mapped into points
of P? as given by eq. (1.6). Below we summarize the various cases :

4 l
[a1,0,as] ,m =00 (0, —as,ay) ,on the y — axis
0, as,a3] ,m =0 (d, —as3,1) ,on the x — axis
[—ag,as,a3] ,m =1 (1, —42,0) ,ideal point slope — 72 (°7)

das’
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Figure 1.5: Under the duality parallel lines map into points on the same vertical line. On the
projective plane model, the great semi-circles representing the lines share the same diameter
since the lines have the same ideal point.



For the other half of the duality, using homogeneous coordinates we look carefully into
the point P — P line correspondence illustrated in Fig. 1.6. The point P = (p1,p2,p3) =
(p1/p3, p2/p3, 1), ps # 0, is represented in the xy-plane by the line P with slope (p2—p1)/dps.
Hence,

P (dps)y=(p2—p1)z+dp1,
so that
P = (p1,p2,p3) — P =1[(p1 —p2), dps, —dp1]. (1.7)

The ideal point P>° = (p1, p2, 0) = (1, pa/p1, 0) has direction with slope m = py/p;, there-
fore, P> = [(p1—p2), 0, —dp1] = [L—m, 0, —d] which is the vertical line at z = d / (1—m)
as expected (see also Fig. 1.4). Considering P and P as column vectors we can write the
above correspondence as a linear transformation:

P=BP ,P=B"'P

with
-1 1 0 0 0 1/d
B = 00 —d|,B"'=]1 0 1/d | . (1.8)
d 0 0 0 —-1/d 0

So, in ||-coords there is a fundamental Point = Line duality, formalized by Equations (1.5)
and (1.7). Curiously for d = 1, AT = B~1.
Altogether then we have the transformations : line ¢ A7 point, and point P . p

line. We can continue as £ — ¢ — 7 but in general the line £ is not the same as the line /.
That is B(Afl) # ¢ and likewise A(BP) # P ( See exercises 2 , 3). By the way, the matrices

(0’%)\@ b2)

X1 XQ

Figure 1.6: A point P = (py,p2, p3) = (p1/p3, p2/p3, 1), p3 # 0, is represented by a line P.
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Figure 1.7: Motivation for the notation X; of the axes, note the position of the z;. Two lines
x1 = a,z9 = b on the point P (left) whose images are two points a, b on the line P (right).
The axis X represents the ideal point in the vertical direction (hence Zs is on it) and X, in
the horizontal (with Z; on it).

Figure 1.8: Hyperbola(point-curve) — Ellipse(line-curve).

A, B are quite sparse (i.e. have lots of zeros) and usually taking d = 1 so the computation
to and from ||-coords is not too costly.

A few words about the notation shown in Fig. 1.7 are in order. Each of the axes
X, ,i=1,2 represents a family of parallel lines. Specifically, X; represents the parallel lines
xr; = constant or the ideal point in the direction of x;. Note the representation of x; and x,
above.

The image(representation) 7 of a curve r can be obtained as the envelope? of the lines
representing the points of r. This is distinguished by referring to the original curves as point-
curves and their images as line-curves an example is shown in Fig. 1.8. Line-curves will be

2As explained in the Chapter on Envelopes



constructed from the envelope of the family of curves (for an old but very nice treatment of
envelopes see [1]). In fact, the point £ can also be found in this way to be the envelope of
the infinite family of lines A. In the chapter on Curves it is seen that

point — curve < point — curve

directly by a transformation between the zjxo and zy projective planes [3]. Additional
related topics can be found in [2].

Exercises

1. Verify eq. (1.2). Hint: The lines A;, i = 1,2 are on the points (0, a;), (d, ma; + b) of
the zy-plane and £ = A; N A,.

2. Apply ¢ A 7 2 7., Does the pattern repeat? i.e. ¢ — .. — [ after a finite
number of transformations. What is meant here is the application of the line-to-
point transformation expressed by the matrix A, then the point-to-line transformation
expressed by the matrix B etc.

3. Repeat for P L P4 P... Does this pattern repeat?

1.2 Transformations under the duality

1.2.1 Rotations and Translations

With reference to Fig. 1.9, a line ¢ originaly horizontal, shown in position /,, is rotated
counterclockwise about one of it’s points which for convenience is taken as the origin O.
Under the duality, the corresponding path of ¢ is along the line O since in any of its ro-
tated positions (say {1, {5, {3 etc.) £ still contains the point O. To better understand the
corresponding motion of the point ¢, recall that in the projective plane a line behaves like a
“closed curve” (see Fig. 1.5) “joined” at its ideal point. Hence due to the counterclockwise
rotation, the point £ moves in the direction of increasing x (i.e. to the right) until the line’s
slope is 1 when /£ passes through the ideal point and “returns” to the Euclidean plane now
on the left of the X;-axis but still moving to the right. Dually, a translation of point A
in the positive direction along a line ¢ (taken for convenience coincident with the x;-axis)
corresponds to the rotation of the line A in the clockwise direction. There are corresponding
dualities and quite useful in higher dimensions which we will meet in due course.

1.2.2 Recognizing Orthogonality
There are two more transformations worth presenting at this stage.

1. R%, Reflection about the line x = % In the xy-plane the reflection of the vertical line

P> (the set of points representing the lines with slope m), about the line z = % is the
line P{°( the set of points representing the lines with slope %), as shown in Fig. 1.10.

7



Figure 1.9: Duality between rotations and translations

That is, such a reflection finds the image of the lines with the reciprocal of the slope
or

R

1
2

(P) = PY.

2. C%, Circle Inversion. Consider the tangent from the point £, = P> N z-axis to the

circle centered at (3,0) at the point ¢y and radius %, see Fig. 1.11. Then z({;) =

27
1 0
) C% —P_m.

With the composition ) )
RiC(FY) =P

the image of the lines orthogonal to the original ones is found. The x-distances a,b (shown
in figures 1.10 and 1.11) of P2° from (3,0) are:

__(1—m) . 14m
T m) T 21— m)

respectively. Therefore, ab = 1/4 is the invariance for the corresponding two lines (or families
of lines) to be mutually orthogonal. All this shows that information on orthogonality is not
“lost” when using [|-coords.



Figure 1.10: Reflection about the line %

1.2.3 A Preview

A glimpse of what lies ahead is seen in Fig. 1.12. In part (a) we see a square with unit
side in Cartesian and dually in parallel coordinates. Note that the edge AB is the point
represented by the intersection of the lines A with B representing the corresponding two
vertices. The situation becomes more interesting in part (b) where a cube with unit side
and its image are shown. The collection of all vertices has coordinates which are all possible
ordered triples with 0’s and 1’s. The image of the cube consists of two adjacent copies of the
square’s image. Note the polygonal line indicated as the image of the vertex £ = (1,0,0)
for example. It is clear that all of the cube’s vertices are included in the image. Also the

EA R =
m
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b
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Figure 1.11: Circle Inversion
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Figure 1.12: (a)Square,(b) 3-D cube (c) 5-D hypercube all with unit side

connection with the square as well as the symmetry of the cube are “suggested”, but albeit
not as of yet clearly understood, in the “double-square” image. In due course, we will see
that this image contains all the information about the cube; namely, the edges, faces as
well as inside and outside. Finally, whereas we do not know how to show a hypercube in
5-D or higher in Cartesian coordinates, there is no problem doing so in parallel coordinates
as we can see in part (c) of the figure and still, as we shall eventually show, with all the
information there. We will also see that showing objects with high-symmetry by repetitive
patterns is more general than the hypercube. Now the reason this works is that our duality
has nice generalizations to higher dimensions which is our next topic. Though the ensuing
the development is carried out in the projective plane, it works out that we can still use all
the Euclidean notions of angle, distance etc as long as ideal elements are not involved.

FErercises

Draw in Cartesian and Parallel coordinates a point P = (py, p2) and a line ¢ before and
after :

10



. the translation of the origin to the point (aq, as),
. the reflections about the x; and x5 axes,
. the rotation of the axes about the origin by an angle 6,

. the composition of the translation followed by the rotation.

11
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