
Dipartimento di Informatica
Università degli Studi di Verona

Rapporto di ricerca
Research report

RR 78/2009
October 2009

Validating Spatial Integrity
Constraints through SQL Queries

Alberto Belussi
Sara Migliorini
Mauro Negri
Giuseppe Pelagatti

Questo rapporto è disponibile su Web all’indirizzo:
This report is available on the web at the address:
http://www.di.univr.it/report

Abstract

The validation of spatial integrity constraints specified at conceptual level is
an important activity, both for checking the quality of the provided datasets
resulting from a production process and for monitoring the consistency of
information stored into a spatial database, in particular when updates have
to be handled.

This document presents a methodology for validating spatial integrity
constraints defined at conceptual level through the GeoUML modeling lan-
guage, by translating them into SQL spatial queries. The GeoUML language
allows designers not only to represent spatial and non-spatial properties of a
dataset, but also to specify spatial integrity constraints, using some prede-
fined OCL templates referring to topological and part-whole relations. The
aim of this work is to define a set of mapping rules for translating these con-
straints into spatial SQL queries that return the violating objects. Namely,
for each kind of GeoUML spatial constraints an SQL query template is de-
fined, that can be automatically customized with respect to the particular
considered constraint.

1 Introduction

The validation of spatial integrity constraints specified at conceptual level is
an important activity, both for checking the quality of the provided datasets
resulting from a production process and for monitoring the consistency of
information stored into a spatial database, in particular when updates have
to be handled.

The GeoUML modelling language provides some predefined templates in
OCL (Object Constrained Language) [3] for expressing spatial integrity con-
straints at conceptual level. This choice is motivated by the fact that design-
ers of spatial databases for geographical applications very often are not famil-
iar with such formalism; moreover the high expressive power of OCL admits
the representation of the same spatial property in different but equivalent
expressions, and this makes the optimization of constraints checking proce-
dures a severe task. The GeoUML approach overcomes these limitations,
but reduces the expressive power of the constraints expressions. However,
the obtained language for constraints has been applied with success in many
real projects, in particular in the definition of the Italian National Core,
which is the reference spatial database schema for the Italian Spatial Data
Infrastructure.

This report presents the translation of the OCL templates provided by
GeoUML into SQL query templates that can be used for checking a dataset
loaded into a geo-relational database. Each of these templates can be special-
ized according to the particular properties of the involved objects. In order
to present the SQL expressions also the mapping rules for implementing a
GeoUML schema in a geo-relation database are presented.

The report is organized as follows: Section 2 illustrates the main con-
structs of GeoUML, focusing on geometric types, segmented properties and
spatial integrity constrains. The mapping to the geo-relational model is pre-
sented in Section 3, while in Section 4 the SQL templates for the validation
of GeoUML spatial integrity constrains are defined.

2 The GeoUML Modeling Language

The GeoUML is an UML based language for the conceptual modeling and
representation of spatial information. It inherits from UML some basic con-
cepts such as the notion of class, attribute, association, class inheritance and
data type and it defines some new constructs for the representation of spatial
information. Beyond the definition of new constructs, the most evident dif-
ference between these two languages is about the syntax: GeoUML has both

1

a graphical and a textual representation, and the main syntax is considered
the textual one, while the graphical representation is used only to enhance
the readability of a specification.

Beside the basic concepts that GeoUML inherits form the UML lan-
guage, it supplies some additional non-geometric constructs for supporting
the schema designer in the specification of properties very often used in
describing spatial data. These constructs are: primary key, enumerated at-
tribute and hierarchical enumerated attribute, whose presentation is out of
the scope of this report.

The main additional part provided by GeoUML concerns the definition
of spatial attributes and their correlated properties (in particular segmented
properties and spatial integrity constraints). Indeed, each class instance
(called feature in spatial terminology) is characterized by one or more spa-
tial attributes. A spatial attribute is an attribute whose values belong to
a geometric domain. Each class can have one or more spatial attributes,
which in the textual representation of a GeoUML schema are isolated from
the thematic ones by the keyword spatial attributes, while in the graph-
ical representation this distinction is loosed and the spatial attributes are
represented as normal ones, as illustrated in Figure 1.

A detailed presentation of the GeoUML language is beyond the scope of
this report, so we concentrate only on the main aspect of GeoUML as regard
to the validation issue: geometric data types, segmented properties and spatial
integrity constraints, which are presented into the following sections.

class Road

attributes

class attributes

PK Code: String

Name: String

spatial attributes

Path: GU_CXCurve3D

Extent: GU_CXSurface2D

Figure 1: GeoUML graphical and textual representation of the class Road

which is characterized by two spatial attributes: Path and Extent.

2.1 Geometric Data Types

The geometric data types provided by GeoUML for specifying spatial at-
tributes of features, have been defined by using the point set model and
in agreement with the Simple Feature Model (SFM) [4] for 2D geometries.

2

Moreover, for 2D types representing points and lines the corresponding ver-
sion in 3D space has been defined. In the sequel, when the coordinate di-
mension is not important, we use the symbol * for denoting types that have
both a 2D and a 3D version. The GeoUML data types can be divided into
two major kinds: geometric primitives and geometry collections.

A geometric primitive is an atomic geometric value representing points,
lines or surfaces, i.e. it is not separable into smaller parts. Geometric primi-
tive types are: GU Point*D, GU CPCurve*D, GU CPSimpleCurve*D, GU CPRi-

ng*D, GU CPSurface2D. An object of type GU Point*D is a zero-dimensional
geometric object (called point) which represents an individual position on
the Earth surface. The two alternatives differ on the number of coordinates
which are used to define the point. An object of type GU CPCurve*D is a
primitive curve in the 2D (3D) space. A curve is a one-dimensional geometric
object usually represented by a sequence of points (vertices), where the type
of interpolation can be different. The GeoUML model does not prescribe a
particular interpolation method. The type GU CPSimpleCurve*D specializes
the previous type adding the condition of being simple (a curve is simple if it
has no self-intersections), while the type GU CPRing*D also includes the con-
dition of being cycle (a curve is a cycle if its endpoints coincide). An object
of type GU CPSurface2D is the primitive surface in the 2D space, namely it
is a bi-dimensional planar object which is connected and defined by a closed
2D curve, that represents the external boundary of the surface, and zero, one
or more closed 2D curves that represent the holes (internal boundaries).

A geometry collection is a collection of various geometric primitives; it
can be homogeneous, if it contains primitives of the same type (multi-point,
multi-curve and multi-surface), or non homogeneous, if it contains primitives
of different types (generic aggregate). Non homogeneous collection geome-
tries are modeled using the type GU Aggregate*D. This type models multi-
dimensional objects composed of a collection of one or more objects of any
primitive type. The 2D and 3D alternatives differs only in the coordinate
dimensions of the objects involved; these collections are not subject to any
other constraints.

Homogeneous geometry collection types are: GU CXPoint*D, GU CXCurve*D,
GU CXRing*D, GU CNCurve*D and GU CXSurface2D. In particular, an object of
type GU CXPoint*D is an aggregate of points. An object of type GU CXCurve*D

is an aggregate of curves in the 2D (3D) space with the constraint that its
curve components may possibly intersect only in a finite number of points.
An object of type GU CXRing*D specializes the previous type with the con-
straint that all the components are closed and simple, while an object of type
GU CNCurve*D adds the constraint that the overall curve is also a connected
point set. Finally, an object of type GU CXSurface2D is an aggregate of sur-

3

faces with the constraint that each pair of surfaces is disjoint or intersects
only in a finite number of points on their boundaries.

Figure 2 illustrates the UML class hierarchy diagram for the geometric
types of GeoUML. Notice that, the root class of the hierarchy is GU Object,
that collects all common properties shared by all geometric types.

Figure 2: Class diagram of the GeoUML geometric data types. The symbol
* stands for 2 or 3 in a coherent manner.

The GU Object type exposes a set of methods (functions) that are spe-
cialized in each geometric type. In the following we use the usual notation
o.f() to denote the application of the method f() on the object o.

• o.boundary(): it returns a geometric object which represents the
boundary of o. The definition of boundary for an object depends
on its specific type. In particular, the boundary is not defined for
the type GU Aggregate*D. For the types GU Point*D, GU CXPoint*D,

4

GU CPRing*D and GU CXRing*D the boundary is empty; for the types
GU CPCurve*D and GU CPSimpleCurve*D the boundary is constituted
of the two curve endpoints, while the boundary of a GU CXCurve*D or
GU CNCurve*D is defined by the mod 2 union rule, thus it combines the
points that are boundary of an odd number of component curves, as
defined in the SFM standard [4]. The boundary of a GU CPSurface2D is
composed of the curves that represent its internal and external bound-
aries, while the boundary of a GU CXSurface2D is composed of the
boundary of its component surfaces.

• o.isSimple(): it returns true if o is simple, i.e. if it does not contains
point of self intersection or tangency.

• o.isCycle(): it returns true if the boundary of o is empty.

• o.dimension(): it returns 0 if o is a point, 1 if o is a line or 2 if o is
a surface.

• o.coordinateDimension(): it returns the number of coordinates used
for the definition of the object points (2 or 3).

• o.spatialRS(): it returns the spatial reference systems for the object
coordinates.

• o.planar(): it returns the geometric object that represents the pro-
jection of o in the 2D space.

• o.union(o1): it returns the geometric object representing the point
set union of o and o1.

The topological relations used in GeoUML are: disjoint (DJ), touch (TC),
in (IN), contain (CT), equal (EQ) and overlap (OV). They are a refinement
of those defined by Clementini et al in [2]; moreover, the relations intersect
(IT) and cross (CR) are added to this set. The semantics of these topological
relations is given in Table 1 with the specification of the possible types for
the involved objects.

The GeoUML geometric types allow one to represent surfaces only in the
2D space. In order to enrich this representation, the types GU CPSurfaceB3D

and GU CXSurfaceB3D have been added. Using these types it is possible to
represent a 2D surface together with its 3D boundary, called in short B3D
surface. Each B3D surface can be intended as a GeoUML object with two
spatial attributes: one of type GU C*Surface2D and one of type GU CXRing3D,
which represent the surface extent and the surface boundary respectively. In

5

addition, for each B3D surface the planar projection of the GU CXRing3D

component has to be equal to the boundary of the 2D surface.

Relation Types Semantics

a DJ b (A,A) a ∩ b = ∅
a TC b

(S,A),(C,A) (a◦ ∩ b◦ = ∅) ∧
(A,S),(A,C) (a ∩ b 6= ∅)

a IN b

(A,S),(C,C) (a◦ ∩ b◦ 6= ∅) ∧
(P,C),(S,A) (a ∩ b = a) ∧

(C,P) (a ∩ b 6= b)

a CT b

(S,A),(C,C)

b IN a(C,P),(A,S)

(P,C)

a OV b

(S,S),(S,C) (a◦ ∩ b◦ 6= ∅) ∧
(C,C) (a ∩ b 6= a) ∧
(C,S) (a ∩ b 6= b)

a EQ b
(S,S),(C,C) (a ∩ b = a) ∧

(P,P) (a ∩ b = b)

a IT b (A,A)
(a ∩ b 6= ∅) ∧

not a EQ b

a CR b (C,C)

a OV b ∧
dim(a ∩ b) = 0 ∧
dim(a) = dim(b) = 1

Table 1: Semantics of the GeoUML topological relations (the keyword A

stands for any geometric types excluding GU Aggregate*D, P stands for all
point types, C stands for all curve types and S stands for all surface types).

2.2 Segmented Properties

Modeling geographic information at conceptual level often requires specifying
properties that change their value along the geometry of a feature. GeoUML
allows one to represent this kind of properties by using a specific construct
called segmented property : it is a feature attribute whose value is a func-
tion from a spatial attribute g of the same feature to a simple domain DA.
Therefore, its value is not constant for the whole geometric extent of g, but
it changes on g in a discrete mode. According to the type of the spatial at-
tribute on which it is defined, segmented properties can be distinguished into
linear and sub-regional segmented properties. A linear segmented property is
defined along a GU C*Curve*D type: it divides the curve into segments with

6

homogeneous value. Similarly, a sub-regional segmented property associates
a particular value to different sub-regions of a GU C*Surface2D.

In order to represent a segmented property in the textual representation,
we insert after the definition of the interested spatial attribute the keyword
segmented properties, followed by the list of segmented properties for this
spatial component, as shown in the example of Figure 3.

Using the graphical representation each segmented property is defined by
one of the following methods where A is the property name:

segmentsOf A (condition on DA): GU CXCurve*D

subregionsOf A (condition on DA): GU CXSurface2D

which return a complex curve (surface) composed of the set of curve segments
(sub-regions) that satisfy a particular condition on the attribute domain DA.

class Road

attributes

class attributes

PK Code: String

Name: String

spatial attributes

Path: GU_CPCurve2D

segmented_properties

SpeedLimits: Integer

segmented_on Path

Figure 3: Graphical and textual representation of a linear segmented prop-
erty defined on the Path spatial attribute of the class Road.

2.3 GeoUML Spatial Integrity Constraints

A spatial integrity constraint is a condition defined on spatial properties of
features that must be satisfied by any database instance. In GeoUML these
constraints are classified into two major kinds: topological and part-whole
constraints. In the following sections we present the textual syntax that
GeoUML provides for the definition of these constraints and we illustrate
informally their semantics. Notice that, the GeoUML model defines for each
constraint type an OCL template, that specifies formally its semantics; such
OCL templates have been previously presented in [1] and are out of the scope
of this report.

2.3.1 Topological Constraints

A topological constraint refers to a spatial property involving two features
which is described by a topological relation between them. In order to define a

7

topological constraint we need to specify two aspects: (1) the spatial relation
used in the constraint and (2) the logical structure of the constraint. The
GeoUML reference set of topological relations has been defined in Table 1,
while the logical structure of the available constraints types is presented in
the following of this section.

Basic existential topological constraint The basic form of existential
topological constraint requires that for each feature x of the constrained class
X, there exists a feature y of the constraining class Y, such that between
the spatial attribute g of x and the spatial attribute f of y a particular
topological relation (or disjunction of topological relations) is satisfied. The
textual syntax of this constraint is assigned as follows:

constraint X.g (rel1 | . . . | rel2) exists Y.f

An existential topological constraint can also be defined on the geometry
of a segmented property. In this case, in the constraint definition the spatial
attribute is replaced by the function: segmentsOf A () or subregionsOf A ()

where A is the name of the segmented property. The replacement of a spatial
attribute with a segmented property can be applied both to the constrained
and the constraining class or to only one of them. This constraint is repre-
sented as follows:

constraint X.segmentsOf A () (rel1 | . . . | rel2)

exists Y.segmentsOf B ()

Many alternatives of the basic existential topological constraint can be de-
fined by changing the form of both the constrained and the constraining
class, or only one of them.

Existential topological constraint with selection An existential topo-
logical constraint is usually checked with respect to all the instances of the
constrained and the constraining classes. Nevertheless, a selection can be
applied in order to restrict the features involved in the constraint, in other
words the constraint is checked only with respect to the features satisfying
the selection. The selection condition can be applied to both the constrained
and the constraining class or only one of them. Its textual representation is:

constraint (σ1(X))X.g (rel1 | . . . | rel2)

exists (σ2(X,Y))Y.f

8

where σ1 and σ2 can be basic selections (i.e. logical expression like “attribute
comparator value”) or join selections (like “attribute comparator con-

strainedClass.attribute”) which permits to bind constraining features to
constrained features.

Existential topological constraint on boundary/planar projection
The boundary function (bnd()) or the planar projection (pln()) can be
applied on the spatial attributes involved in the constraint before checking
it. These functions can be combined with the selection alternative presented
above, but they cannot be applied on segmented properties. The textual
representation of this constraint is:

constraint X.g.bnd() (rel1 | . . . | rel2) exists Y.f.pln()

Existential topological constraint connected to an association This
existential constraint considers only the features of the constraining class
which are connected to the constrained one through a given association. The
constraint is textually represented as:

constraint X.g (rel1 | . . . | rel2) exists X.r.f

where r is the role of Y in the association between X and Y (notice that
X.r identifies an instance of Y). This alternative can be combined with any
of the previous one.

Union existential topological constraint Instead of requiring the ex-
istence of a Y instance that satisfies the constraint, the union existential
topological constraint requires that the topological relation is satisfied be-
tween the spatial attribute g of the constrained instance and the union of
the spatial attribute f of all the instances of the constraining class Y. The
textual representation of this constraint is:

constraint X.g (rel1 | . . . | rel2) union Y.f

The three alternatives mentioned above can be defined also for the union
existential topological constraint: the one that considers the selection of
instances, the one referring to the boundary or planar projection and the one
connected to an association.

9

Universal topological constraint By replacing the existential quantifier
with the universal one, we obtain a new version of the topological constraint
which requires that the topological relation exists between the spatial at-
tribute g of the constrained feature and the spatial attribute f of all the
features of the constraining class Y.

constraint X.g (rel1 | . . . | rel2) forAll Y.f

All the alternatives presented above for the existential constraint can also
be applied to the universal one. In particular, we can define: a universal
topological constraint with selection, a universal topological constraint on
the boundary or planar projection and a universal topological constraint
connected to an association. Finally, the universal topological constrain can
also be applied on segmented properties.

2.3.2 Part-Whole Constraints

Part-whole constraints allow one to specify that two classes are in a (spatial)
composition relationship. In GeoUML there are four main kinds of part-
whole constraints: strong composition, weak composition, membership and
partition. All these constraints have existential type, so they require that
given a spatial attribute f of an instance of the composite class Y, there
exists some instances of the component class X whose spatial attributes g
together compose f.

The same alternatives presented for the topological constraints can also
be defined for the part-whole constraints: part-whole constraint with selec-
tion, part-whole constraint on boundary or planar projection and part-whole
constraint connected to an association. Finally, the part-whole constraint
can also be defined on segmented properties.

Strong composition The strong composition constraint requires that for
each instance of the constrained class X, its spatial attribute g must be
equal to the union of the spatial attribute f of one or more instances of the
constraining class Y.

constraint X.g composedOf Y.f

Weak composition The weak composition constraint requires that for
each instance of the constrained class X, its spatial attribute g must be
contained into the union of the spatial attribute f of one or more instances
of the constraining class Y.

constraint X.g coveredBy Y.f

10

Membership The membership constraint of the spatial attribute g of the
constrained class X to the spatial attribute f of the constraining class Y
can be represented by an existential topological constraint between g and f,
where the relation involved is IN. In GeoUML some alternatives of the pure
membership constraints are defined:

• Disjoint membership: the membership constraint with disjunction re-
quires that among the components of the same whole exists only the
disjoint or touch relation.

constraint X.g dj-IN Y.f

• Weak-Disjoint membership: this constraint can be applied only to lin-
ear spatial attributes and admits that among components of the same
whole is valid also the cross relation, further to disjoint or touch.

constraint X.g wdj-IN Y.f

Partition The partition constraint requires that the spatial attribute f of
each instance of the partitioned class Y has to be composed by the spatial
attribute g of one or more instances of the component class X with the
following conditions:

• The union of the spatial attributes g of the X instances is equal to the
spatial attribute f of the Y instance.

• The spatial attribute g of the X instances that compose f are not
overlapping, at most they can touch.

The partition constraint is obtained combining the strong composition con-
straint with a disjoint or weak-disjoint membership constraint.

3 Basic Relational Mapping Rules

This section presents the mapping rules applied for translating a GeoUML
conceptual schema into a geo-relational schema, with reference to PostGIS
system for the mapping of data types. In particular, this section deals with
the translation of the basic constructs, such as: classes, associations between
classes and segmented properties; while the translation of spatial integrity
constraints is treated in Section 4.

In the following we use the term S to denote a generic GeoUML concep-
tual schema, while during the table and query definitions we use strings in
italics as placeholder for the name of a particular class, attribute, relation,
and so on.

11

3.1 Class Mapping

For each class className in S we generate a table with the same name as
the class and a primary key attribute uuid:

Table name: className

Table columns:

uuid: varchar(64)

Moreover, for each class attribute of type: String, NumericString, Integer,
Real, Boolean, Date, Time, DateTime (i.e. basic types of GeoUML) we add
to the class table an attribute as follows:

attributeName : Domain(attributeDomain)

where the function Domain(attributeDomain) returns for each GeoUML
basic type the corresponding SQL type. For example, if the attribute do-
main is String(x) or NumericString(x) then the function returns varchar(x),
while if the attribute domain is DateTime it returns datetime, and so on.

For each class attribute of type dataTypeName we add a column in the
table className with the following characteristics:

id attributeName : varchar(64) references dataTypeName (id)

where dataTypeName is the table implementing the data type. For each (hi-
erarchical) enumerated class attribute attributeName with domain domain-
Name we add a column in the table className as follows:

code attributeName : varchar(80) references domainNameE (code)

where domainNameE is the table that implements the (hierarchical) enumer-
ated domain. In particular, this table contains, for each possible value of the
domain, its code and its description.

For each spatial attribute geoAttributeName of the class we add a column
in the table className as follows:

geoAttributeName : corresponding PostGIS domain

Table 2 defines the mapping between GeoUML geometric types and PostGIS
types, the term constraints is used to denote the need for additional con-
straints during the column definition. For example, for ring objects it is nec-

12

essary to check that the curve is a simple cycle (i.e. CHECK ST IsClosed(geo

AttributeName) AND ST IsSimple(geoAttributeName)).

GeoUML type PostGIS type
GU Point*D POINT

GU CPCurve*D LINESTRING

GU SimpleCurve*D LINESTRING + constraints

GU CPRing*2D LINESTRING + constraints

GU CPSurface2D POLYGON

GU Aggregate*D GEOMETRYCOLLECTION

GU CXPoint*2D MULTIPOINT

GU CXCurve*D

MULTILINESTRING + constraintsGU CNCurve*D

GU CXRing*D

GU CXSurface2D MULTIPOLYGON + constraints

Table 2: GeoUML and PostGIS geometric types mapping.

3.2 Class Hierarchy Mapping

For each class hierarchy with root C and children C1, . . . , Cn in S we proceed
as follows: for the root class we generate a table C with the usual mapping
rules and then we add the column:

type : varchar(64)

which indicates the subtype (C1, . . . , Cn) of each C instance. For each child
class we create a table Ci as usual, that contains only the specific attributes
of this child class; then we add the following integrity constraints on the uuid
attribute of each Ci table to the table C :

uuid: varchar(64) references C (id)

3.3 Association Mapping

Associations are mapped to the relational model by applying the well-known
approach. In particular, for each binary association associationName in S be-
tween two classes className1 and className2 with cardinality one-to-many
(or one-to-one), we add into the table implementing the class with cardinal-
ity one (suppose it is className1) an attribute which represents the foreign

13

key of the table corresponding to className2. The name of this attribute
will be uuid class2Rule , where class2Rule is the name of the rule assigned
to className2 into the association. If the rule does not have a name, we use
uuid className2 as attribute name.

ALTER TABLE className1

ADD COLUMN uuid class2Rule varchar(64)

REFERENCES className2 (uuid)

If the binary association between className1 and className2 has cardi-
nality many-to-many, we create a new table for the association with the
following characteristics:

Table Name (if the association has a name): associationName

Table Name (otherwise): className1 className2

Table columns:

uuid class1Rule: varchar(64) references className1 (uuid)

uuid class2Rule: varchar(64) references className2 (uuid)

For each attribute attributeName of the association associationName we add
a column into the table associationName as usual.

3.4 Linear Segmented Properties Mapping

For each group of linear segmented properties AT1, . . ., ATn defined on the
same geometric linear attribute geoAttributeName of a class className in S,
we create a table as follows:

Table name: className geoAttributeName

Table columns:

uuid: varchar(64)

uuid className: varchar(64) references className (id)

geometry: LINESTRING 2D/3D

where the uuid attribute is the identifier of a particular line segment, while
uuid className is the identifier of the class className. Hence, we add to
this table the attributes AT1, . . ., ATn following the same mapping rules
established for a class attribute.

14

3.5 Sub-Regional Segmented Properties Mapping

For each group of sub-regional segmented properties AS1, . . ., ASn defined
on the same geometric attribute geoAttributeName of a class className in
S we create a table as follows:

Table name: className geoAttributeName

Table columns:

uuid: varchar(64)

uuid className: varchar(64) references className (id)

geometry: POLYGON 2D

where uuid attribute is the identifier of a particular sub-region, while uuid

className is the identifier of the class className. Hence, we add to the
table the attributes AS1, . . ., ASn with the same mapping rules established
for a class attribute.

4 Spatial Integrity Constraints Validation

Each spatial integrity constraint specified in a GeoUML schema has to be
checked w.r.t the database content. This section presents the mapping rules
that allow one to convert a GeoUML spatial integrity constraint into the
corresponding SQL query. Each query returns the set of constrained class
instances that violate the constraint. In particular, for each type of spatial
constraint presented in Section 2.3 a SQL query template is defined, whose
instantiation changes according to the particular alternative used in the con-
straint specification, for defining the constraining and the constraint class.

4.1 Topological Constraints Validation

This section deals with the translation of the GeoUML topological constraints
presented in Section 2.3.1 into SQL query templates. In the following, we use
strings in bold to denote the variable parts of each query template, namely
the parts that have to be instantiated according to the particular constraint.

4.1.1 Basic existential topological constraint

The basic existential topological constraint:

constraint X.g (rel1 | . . . | reln) exists Y.f

15

PostGIS Function Semantics

ST Disjoint(a,b) a ∩ b = ∅
ST Touches(a,b) (a◦ ∩ b◦ = ∅) ∧ (a ∩ b 6= ∅)
ST Within(a,b) (a◦ ∩ b◦ 6= ∅) ∧ (a ∩ b = a)

ST Contains(a,b) ST Within(b,a)

ST Overlap(a,b)

(a◦ ∩ b◦ 6= ∅) ∧
(a ∩ b 6= a) ∧ (a ∩ b 6= b) ∧
(dim(a◦ ∩ b◦) = max(dim(a), dim(b))

ST Intersects(a,b) not ST Disjoint(a,b)

ST Crosses(a,b)

(a◦ ∩ b◦ 6= ∅) ∧
(a ∩ b 6= a) ∧ (a ∩ b 6= b) ∧
(dim(a◦ ∩ b◦) < max(dim(a), dim(b))

ST Equal(a,b) ST Within(a,b) ∧ ST Within(b,a)

Table 3: Semantics of the PostGIS functions that evaluates the topological
relation that exists between two objects.

can be translated into a query which returns the set of X instances x for
which does not exist any Y instance, whose spatial attribute f is in one of
the requested topological relations with the spatial attribute g of x, as in the
following query template:

SELECT x.uuid as failedObjects, x.g as failedGeometries

FROM X as x

WHERE NOT EXISTS

(SELECT * FROM Y as y

WHERE Topo Condition(x.g, y.f, rel1 | . . . | reln))

The function Topo Condition() is defined as follows:

Topo Condition(x.g, f.y, rel1 | . . . | reln) =

ST XXX1(x.g, y.f) OR . . . OR ST XXXn(x.g, y.f)

where ST XXXi is the PostGIS function corresponding to the relation reli.
The mapping between GeoUML topological relations and PostGIS functions
is illustrated in Table 4, while Table 3 gives the semantics of the PostGIS
functions that evaluate topological relations between geometries. Notice that,
because the PostGIS functions are implemented with respect to the 2D space,
a particular treatment is required for relations between 3D objects. Indeed,
if a topological relation exists between the planar projections of two objects,

16

it is not certain that the same relation between those objects exists in the 3D
space. In this report we focus only on the validation procedure for relations
in 2D space.

GeoUML Relation PostGIS function

a DJ b ST Disjoint(a,b)

a TC b ST Touches(a,b)

a IN b ST Within(a,b) ∧ not ST Equal(a,b)

a CT b ST Contains(a,b) ∧ not ST Equal(a,b)

a OV b ST Overlap(a,b) ∨ ST Crosses(a,b)

a EQ b ST Equal(a,b)

a IT b ST Intersects(a,b) ∧ not ST Equals(a,b)

a CR b ST Crosses(a,b)

Table 4: GeoUML topological relations and PostGIS functions.

Example 1 Suppose to consider two classes Road and RoadArea which are
translated into the following tables:

Table Road Table RoadArea

uuid: varchar(64) uuid: varchar(64)

<Road attributes> <RoadArea attributes>
path: multilinestring extent: multipolygon

The constraints saying that for each road there exists a road area whose
extent contains the road path:

constraint Road.path (IN) exists RoadArea.extent

is translating in the following spatial SQL query:

SELECT x.uuid as failedObjects, x.g as failedGeometries

FROM Road as x

WHERE NOT EXISTS

(SELECT * FROM CL RoadArea as y

WHERE ST Within(x.path, y.extent))

4.1.2 Basic existential topological constraint alternatives

Each alternative of the basic existential topological constraint presented in
Section 2.3.1 has the general form:

17

constraint <contrained class expr>(rel1 | . . . | reln)

exists <constraining class expr>

Therefore, by refining the SQL query template specified for the basic case, a
generic template for all the existential topological constraint can be defined,
which has to be specialized according to the particular form of the con-
strained and constraining class expressions. For simplifying the definition of
a common generic template, two temporary tables, named Constrained and
Constraining, are created. These tables contain the set of objects obtained
by evaluating the constrained and constraining expression respectively.

CREATE TABLE Constrained AS(

SELECT x.uuid, x.pk 1, . . ., x.pk n,
<ed add idattrib>, <ed add attrib>,

<ed geom> as g

FROM <ed from expr>
WHERE <ed geom> IS NOT NULL

<ed where expr>
<ed groupby expr>)

CREATE INDEX Constrained G Index ON Constrained USING GIST (g)

CREATE TABLE Constraining AS(

SELECT y.uuid <ing add attrib>, <ing geom> as f

FROM <ing from expr>
WHERE <ing geom> IS NOT NULL

<ing where expr>
<ing groupby expr>

CREATE INDEX Constraining G Index ON Constraining USING GIST (f)

The SQL query template that retrieves the set of objects violating a generic
existential topological constraint becomes:

SELECT x.uuid as failedObjects,

x.pk 1, ..., x.pk n,
<ed add idattrib>
x.g as failedGeometries

FROM Constrained as x

WHERE NOT EXISTS(

SELECT *

18

FROM Constraining <const from expr>
WHERE <const where expr> AND

Topo Condition(g, f, rel1 | . . . | reln))

These template queries for the construction of the temporary tables and
the constraint verification have to be instantiated according to the particular
alternative chosen for the constrained and constraining class, as explained in
the following sections.

�
��

Figure 4: Schema about the selection process of the constrained geometries.

Let us notice that the constrained and the constraining class expressions
that appear in a general constraint have the form feature selector.geo-

19

metry selector, where feature selector determines the features involved
in the constraint, while the geometry selector determines the geometric
value involved in the constraint.

4.1.3 Constrained class expression

The constrained class expression, which appears in the generic existential
topological constraint presented above, can be instantiated in different way,
according to one of the alternatives presented in Section 2.3.1. The form of
the constrained class expression determines a different instantiation of the
queries for creating the constrained temporary table and for performing the
validation.

In the following the possible alternatives for the feature selector and
the geometry selector expression of the constrained class are deeply ana-
lyzed and the corresponding query templates instantiated. Figure 4 summa-
rizes how the constrained class expression can be built.

Feature selector The feature selector expression for the constrained class
can take one of the following forms:

1. Basic instance selector X

If the feature selector expression is of the basic form X, then the
template for the Constrained temporary table is instantiated as:

• <ed from expr> :== X as x

• <ed where expr> :== true

2. Selection condition on class instances (σ1(X))X
In case a selection is performer on the constrained class X, that is if
the feature selector expression has the form (σ1(X))X, then the
where clause has to be augmented with the corresponding SQL selection
condition, in order to restrict the considered X instances.

• <ed from expr> :== X as x

If σ1(X) refers to attributes of a structured attribute or to multi-
valued attributes of the X class, then the tables representing these
attributes have to be joined as follows:

(a) For each simple (i.e. of basic type) multi-valued attribute a
in σ1(X):
<ed from expr> :== <ed from expr> +

LEFT JOIN X a AS m1 ON x.uuid = m1.uuid

20

Moreover during the translation of the selection condition
σ1(X) the attribute a must be referred to as: m1.a.

(b) For each enumerated (or hierarchical enumerated) multi-valued
attribute a in σ1(X):
<ed from expr> :== <ed from expr> +

LEFT JOIN X a AS m1 ON x.uuid = m1.uuid

Moreover during the translation of the selection condition
σ1(X) the attribute a must be referred to as: m1.code a
(m1.codeH a).

(c) For each simple (i.e. of basic type) attribute b of a multi-
valued attribute s of type DataType in σ1(X):
<ed from expr> :== <ed from expr> +

LEFT JOIN X s T as s1 ON x.uuid = s1.uuid

Moreover during the translation of the selection condition
σ1(X) the attribute b must be referred to as: s1.code b
(s1.codeH b).

(d) For each enumerated (or hierarchical enumerated) attribute
b of a multi-valued attribute s of type DataType in σ1(X):
<ed from expr> :== <ed from expr> +

LEFT JOIN X s T AS s1 ON x.uuid = m1.uuid

Moreover during the translation of the selection condition
σ1(X) the attribute b must be referred to as: s1.code b
(s1.codeH b).

• <ed where expr> :== SelCondition(σ1(x))

where SelCondition(σ1(x)) translates the selection condition
σ1(x) = [not](α1 logicOperator . . . logicOperator αn) into
the corresponding SQL statement through the following rules:

(a) or, and and not remain unchanged;

(b) each (X.a op Y.b is translated into (x.a trad(op) x.b),
where trad(op) translates the comparison operator (=, <, >,
≤, ≥, 6=) into the corresponding SQL comparison operator;

(c) each (X.a op const) is translated into (x.a trad(op) trad

(const)), where trad(const) is the translation of the con-
stant value into SQL, in particular a numeric value is live
unchanged, while a string value is putted within single mark
and so on.

(d) each (X.a = null) is translated into (x.a IS NULL) and
each (X.a = not null) is translated in (x.a IS NOT NULL).

21

Geometry selector The geometry selector expression for the constrained
class can take one of the following forms:

1. Basic geometry selector g

If the geometry selector expression is of the basic form g, then the
template for the Constrained temporary table is instantiated as fol-
lows:

• <ed geom> :== x.g

2. Boundary/planar projection g.bnd()/g.pln()

If the existential topological constraint refers to the boundary or pla-
nar projection of the spatial attribute of the constrained class X, then
the function ST Boundary() or ST Force2D() has to be applied in the
constrained geometry expression. Therefore, the query template is in-
stantiated as bellow:

• <ed geom> :== ST Boundary(x.g)

• <ed geom> :== ST Union(ST Force2d(x.g))

3. Segmented properities g.segmentsOf A ()

If the existential topological constraint refers to the segmented property
A of the spatial attribute g of the constrained class X, that is if the
geometry selector has the form g.segmentsOf A (), then the query
template is instantiated as:

• <ed add idattrib> :== , t1.A

• <ed from expr> :== <espr from ed> +

JOIN X g SG as t1 ON x.uuid = t1.uuid X

• <ed geom> :== ST Union(t1.geometry)

• <ed groupby expr> :== GROUP BY t1.A, x.uuid

Notice that the function ST Union() and the GROUP BY condition are
added in order to reconstruct the homogeneous segments of A, that is
the set of segments characterized by the same value of the segmented
property. Indeed, there can exists many disconnected segments char-
acterized by the same value of A.

4. Selection on segmented properties g.segmentsOf A (σ1a(X,A))

An existential topological constraint can also refers to a selection on
the segmented property A of the spatial attribute g of X. In that case
the geometry selector has the form g.segmentsOf A (σ1a(X,A)), where

22

σ1a(X,A) contains a selection on the segmented property A, possibly
a comparison between A and an attribute of X. Note that if the at-
tribute of X is a multi-valued attribute, then the from clause has to be
completed as illustrated previously.

In presence of a selection on segmented properties, the query template
is instantiated as follows:

• <ed add idattrib> :== , t1.uuid

• <ed add attrib> :== , t1.A

• <ed from expr> :== <ed from expr>
+ ‘‘ JOIN X g SG as t1’’

+ ‘‘ ON x.uuid = t1.uuid X’’

• <ed geom> :== ST Union(t1.geometry)

• <ed where expr> :== SelCondition(σ1a(x,t1.A))
where SelCondition(σ1a(x,t1.A)) translates the selection con-
dition σ1a(x,t1.A) = [not](α1 logicOperator ...logicOpe-

rator αn) into the corresponding SQL statement through the
rules illustrated above.

• <ed groupby expr> :== GROUP BY t1.A, x.uuid

As in the previous case, the function ST Union() and the GROUP BY

condition are added in order to reconstruct the homogeneous segments.

4.1.4 Constraining class expression

As done for the constrained class expression, in this section the possible
alternatives for the feature selector and the geometry selector expres-
sion of the constraining class are deeply analyzed and the corresponding
query templates instantiated. Figure 5 summarizes how the constraining
class expression can be built.

Feature selector The feature selector expression for the constraining class
can take one of the following forms:

1. Basic instance selector Y

If the feature selector expression is of the basic form Y, then the
template for the Constraining temporary table is instantiated as:

• <ing from expr> :== Y as y

• <ing where expr> :== true

23

�
��

Figure 5: Schema about the selection process of the constraining geometries.

24

2. Selection condition on class instances (σ2(X,Y))Y = (σ2(Y))Y

For a condition (σ2(X,Y))Y that does not involve attributes of X, sim-
ply denoted as (σ2(Y))Y, the template is instantiated as:

• <ing from expr> :== Y as y

If the condition σ2(Y)contains attributes of structured attributes
(possibly multi-valued) or multi-valued attributes of the Y class,
then the tables defining these attributes have to be joined in the
from clause, as follows:

(a) For each simple (i.e. of basic type) multi-valued attribute a
in σ2(Y):
<ing from expr> :== <ing from expr> +

LEFT JOIN Y a AS m1 ON y.uuid = m1.uuid

Moreover, during the translation of the selection condition
σ2(Y), the attribute a has to be referred to as m1.a.

(b) For each enumerated (or hierarchical enumerated) multi-valued
attribute a in σ2(Y):
<ing from expr> :== <ing from expr> +

LEFT JOIN Y a AS m1 ON y.uuid = m1.uuid

Moreover, during the translation of the selection condition
σ2(Y), the attribute a has to be referred to as m1.code a
(m1.codeH a).

(c) For each simple (i.e. of basic type) attribute b of an attribute
s of type DataType in σ2(Y):
<ing from expr> :== <ing from expr> +

LEFT JOIN Y s T AS s1 ON x.uuid = s1.uuid

Moreover, during the translation of the selection condition
σ2(Y), the attribute b has to be referred to as s1.b.

(d) For each enumerated (or hierarchical enumerated) attribute
b of an attribute s of type DataType in σ2(Y):
<ing from expr> :== <ing from expr> +

LEFT JOIN Y s T AS s1 ON x.uuid = s1.uuid

Moreover, during the translation of the selection condition
σ2(Y), the attribute b has to be referred to as s1.code b
(s1.codeH b).

• <ing where expr> :== SelCondition(σ2(y))

where SelCondition(σ2(y)) translates the condition σ2(y)=[not]

(α1 logicOperator . . . logicOperator αn) into the correspond-
ing SQL condition, using the rules presented above for σ1(X).

25

3. Selection condition on class instances (σ2(X,Y))Y

For a condition of type (σ2(X,Y))Y that involves the attributes a1, . . . , an

of X and the attributes b1, . . . , bm of Y, the template is instantiated as:

• <ed add attrib> :== , x.a1, . . ., x.an

Moreover, if the geometry selector of X refers to a segmented
property, then the following condition has to be added:
<ed groupby expr> :==

<ed groupby expr>, x.a1, . . ., x.an

• <ing add attrib> :==

<ing add attrib>, y.b1, . . ., y.bm

Moreover, if the geometry selector of Y refers to a segmented
property, then the following condition has to be added:
<ing groupby expr> :==

<ing groupby expr>, y.b1, . . ., y.bm

• <ing from expr> :== Y as y

If σ2(X,Y)refers to attributes of structured multi-valued attributes
or to multi-valued attributes of the Y class, then the table con-
taining the corresponding values have to be joined in the from
clause as illustrated above.

If σ2(X,Y)refers to attributes of structured multi-valued attributes
or to multi-valued attributes of the X class, then the table con-
taining the corresponding values have to be joined into the query
for the construction of the Constrained table as illustrated above.

• <constr where expr> :== SelCondition(σ2(x,y))

where SelCondition(σ2(x,y)) translate the condition σ2(x,y)

= [not](α1 logicOperator . . . logicOperator αn) into the cor-
responding SQL expression, using the rules presended above.

4. Constraining class connected to an association X.r.f

If the instances of the constraining class which are involved in the
constraint are only those that are reachable from an association, then
the <expr where exists> expression has to be enhanced in order to
integrate the translation of X.r.f and thus restrict the constraining
class instances. In doing so, it is necessary to distinguish three cases:

• r is a role with maximum cardinality 1 and it is represented into
the table X by the attribute uuid r:

– <ed add attrib> :== <ed add attrib>, x.uuid r
– <constr where expr> :== <constr where expr>

AND x.uuid r = y.uuid

26

• r is a rule with maximum cardinality n > 1 and its inverse role
ri is represented into the table Y by the attribute uuid ri:

– <ing add attrib> :== <ing add attrib>, y.uuid ri

– <constr where expr> :== <constr where expr>
AND y.uuid r = x.uuid

• r is a rule with maximum cardinality n > 1 and its inverse role ri

is represented into an external table A X Y with attributes uuid r
and uuid ri:

– <espr from vincolo> :==

JOIN A X Y r ON r.uuid r = y.uuid

– <espr where vincolo> :== r.uuid ri = x.uuid

Geometry selector The geometry selector expression for the constraining
class can take one of the following forms:

1. Basic geometry selector f

If the geometry selector expression is of the basic form f, then the
template for the Constraining temporary table is instantiated as:

• <ing geom> :== y.f

2. Boundary/planar projection f.bnd()/f.pln()

If the existential topological constraint refers to the boundary or pla-
nar projection of the spatial attribute of the constrained class Y, then
the function ST Boundary() or ST Force2D() has to be applied in the
constrained geometry expression. Therefore, the query template is in-
stantiated in the follow manner:

• <ing geom> :== ST Boundary(y.f)

• <ing geom> :== ST Union(ST Force2d(y.f)

3. Segmented properities f.segmentsOf B()

If the existential topological constraint refers to the segmented property
B of the spatial attribute f of the constraining class Y, that is the
geometry selector has the form f.segmentsOf B (), then the query
template is instantiated as:

• <ing add attrib > :== , t2.B

• <ing from expr> :== <ing from expr> +

JOIN Y f SG as t2 ON y.uuid = t2.uuid Y

27

• <ing geom> :== ST Union(t2.geometry) AS f

• <ing groupby expr> :== GROUP BY t2.B, y.uuid

4. Selection on segmented properties f.segmentsOf B(σ2b
(y,B)

An existential topological constraint can also refer to a selection σ2b

on the segmented property B of the spatial attribute f of the con-
straining class Y. If the selection condition contains only selections on
the attribute B and possibly comparisons between B and one or more
attribute of Y, the templates are instantiated as:

• <ing add attrib> :== , t2.B

• <ing from expr> :== <ing from expr>
+ ‘‘ JOIN Y f SG as t2’’

+ ‘‘ ON y.uuid = t1.uuid X’’

• <ing geom> :== ST Union(t2.geometry)

• <ing where expr> :== SelCondition(σ2b
(y,t2.b))

where SelCondition(σ2b
(y, t2.b)) translate the condition σ2b

(y,

t2.b) = [not](α1 logicOperator . . . logicOperator αn) into
the corresponding SQL condition, using the rules explained pre-
viously.

• <ing groupby expr> :== GROUP BY t2.B, y.uuid

As explained for the constrained class expression, the function ST Union()

and the GROUP BY condition are added in order to reconstruct the ho-
mogeneous segments.

Note that if the attribute of Y is a multi-valued attribute or an at-
tribute of a structured multi-valued attribute, then the from clause of
the query for constructing the Constraining temporal table has to be
completed as explained previously.

5. Selection on segmented properties f.segmentsOf B (σ2b
(x,y,B))

If the selection condition contains selections on the attribute B and
possibly comparisons among B and the attributes a1, . . ., an of X and
the attributes b1, . . ., bm of Y , the templates are instantiated as as:

• <ed add attrib> :== , x.a1, . . ., x.an

Moreover, if the geometry selector of X refers to a segmented
property, then the following condition has to be added:
<ed groupby expr> :== <ed groupby expr>, x.a1,. . ., x.an

• <ing add attrib> :== , t2.B, y.b1, . . ., y.bm

28

• <ing from expr> :== <ing from expr> +

JOIN Y f SG as t2 ON y.uuid = t1.uuid X

• <ing geom> :== ST Union(t2.geometry)

• <ing groupby expr> :==

GROUP BY t2.B, y.uuid, y.b1, . . ., y.bm

• <join where expr> :== SelCondition(σ2b
(x,y,t2.b))

where SelCondition(σ2b
(y,t2.b)) translate the condition σ2b

(y,

t2.b) = [not](α1 logicOper . . . logicOper αn) into the cor-
responding SQL condition, using the rules explained previously.

As previously, the function ST Union() and the GROUP BY condition
are added in order to reconstruct the homogeneous segments.

Note that if the attribute of the Y or X class is a multi-valued at-
tribute or an attribute of a structured multi-valued attribute, then the
from clause of the query for the construction of the Constraining or
Constrained temporal table has to be completed as previously.

Example 2: Existential topological constraint with selection Let
us consider the previous example about the Road and RoadArea classes and
suppose that the constraint has to be verified only by roads with identifier
value greater than 10. The constraint to check becomes:

constraint (Road.id > 10)Road.path (IN)

exists RoadArea.extent

and the query templates are instantiated as follows:

CREATE TABLE Constrained(

SELECT x.uuid, x.path as g

FROM Road as x

WHERE x.g IS NOT NULL AND x.uuid > 10)

CREATE TABLE Constraining(

SELECT y.uuid, y.extent as f

FROM RoadArea

WHERE y.f IS NOT NULL)

SELECT x.uuid as failedObjects, x.g as failedGeometries

FROM Constrained as x

WHERE NOT EXISTS(SELECT *

29

FROM Constraining as y)

WHERE true AND ST Within (x.path,y.extent))

Example 3: Existential topological constraint on segmented prop-
erty Let us consider the Road and RoadArea classes of Example 1 and
suppose that on the Road spatial attribute path is defined a segmented prop-
erty speedLimit. In order to check that for each segment introduced by this
segmented property there exist a road area that contains it:

constraint Road.segmentsOf Path (IN)

exists RoadArea.extent

the query templates are instantiated in the following manner:

CREATE TABLE Constrained(

SELECT x.uuid, t1.speedLimit, ST Union(t1.geometry) as g

FROM Road as x JOIN Road Path SG as t1

WHERE ST Union(t1.geometry) IS NOT NULL

GROUP BY t1.speedLimit, x.uuid)

CREATE TABLE Constraining(

SELECT y.uuid, y.extent as f

FROM RoadArea

WHERE y.f IS NOT NULL)

SELECT x.uuid as failedObjects, x.g as failedGeometries

FROM Constrained as x

WHERE NOT EXISTS(SELECT *

FROM Constraining as y)

WHERE true AND ST Within (x.path,y.extent))

Example 4: Existential topological constraint with selection on seg-
mented property Let us consider the example illustrated above and sup-
pose that the constraint has to be satisfied only by the segments were the
speed limit is above 50 km/h:

constraint (speed limit > 50)Road.segmentsOf Path (IN)

exists RoadArea.extent

the query templates are instantiated in the following manner:

30

CREATE TABLE Constrained(

SELECT x.uuid, t1.speedLimit,

t1.uuid, ST Union(t1.geometry) as g

FROM Road as x JOIN Road Path SG as t1

WHERE ST Union(t1.geometry) IS NOT NULL AND t1.speedLimit > 50

GROUP BY t1.A, x.uuid)

CREATE TABLE Constraining(

SELECT y.uuid, y.extent as f

FROM RoadArea

WHERE y.f IS NOT NULL)

SELECT x.uuid as failedObjects, x.g as failedGeometries

FROM Constrained as x

WHERE NOT EXISTS(SELECT *

FROM Constraining as y

WHERE true AND ST Within (x.path,y.extent))

4.1.5 Union existential topological constraint

In a union existential topological constraint we refer to the union of the spa-
tial attributes of one or more instances of the constraining class Y.

constraint <contrained class expr>(rel1 | . . . | reln)

union <constraining class expr>

Performing the union of a large number of geometries is an inefficient opera-
tion: some preliminary experiments using an increasing number of geometries
with the ST Union() function of PostGIS have been performed, showing that
over the threshold of 5000 geometries the execution time is greater than an
hour. In order to overcome this limitation we can observe that, to check the
violation of a union existential topological constraint between the spatial at-
tribute g of the constrained class instances and the union of spatial attribute
f of the constraining class instances, it is enough to check the violation with
respect to the union of all the spatial attributes f that have a nonempty inter-
section with g. Therefore, the geometric union has to be performed only on
the necessary geometries, i.e. those that intersect the constrained geometry.

For applying this optimization, we build another a temporary table,
named Constraining Union, starting from the Constrained and Constrain-

ing ones, which contains for each instance x of the constrained class, the spa-

31

tial union of the instances of the constraining class Y whose spatial attribute
intersects the spatial attribute of x.

Number of elements Non optimized query Optimized query
10 796 ms 531 ms
100 14,23 sec 4,98 sec
200 35,09 sec 10,05 sec
300 57,58 sec 15,14 sec
400 1,31 min 20,06 sec
500 1,67 min 24,69 sec
600 2,17 min 29,37 sec
700 2,56 min 32,47 sec
800 2,98 min 39,09 sec
900 3,56 min 44,00 sec
1000 4,06 min 47,55 sec
1500 6,76 min 1,23 min
2000 12,25 min 1,64 min
2500 17,03 min 1,95 min
3000 22,89 min 2,55 min
3500 31,52 min 2,94 min
4000 42,03 min 3,34 min
4500 54,78 min 3,73 min
5000 1,13 hour 4,16 min
5500 1,39 hour 4,64 min
6000 1,58 hour 5,00 min

Table 5: Comparison between the duration of the optimized and not opti-
mized query for the union existential topological constraint.

CREATE TABLE Constraining Union AS(

SELECT x.uuid, x.g, x.pk 1, ..., x.pk n,
<ed add idattrib>,

coalesce(ST union(y.f), empty geometry) as f union

FROM Constrained x LEFT JOIN Constraining y ON

ST Intersects(x.g, y.f)

<const from expr>
WHERE <const where expr>
GROUP BY x.uuid, x.g, x.pk 1, ..., x.pk n, <ed add idattrib>)

CREATE INDEX Constraining union Index ON

Constraining union USING GIST (f)

32

The keyword empty geometry stands for an empty geometry spatial at-
tribute, in PostGIS it can be obtained by considering the boundary of a ring,
for example: ST Boundary(ST GeomFromText(’LINESTRING(0 0, 1 1, 2 3,

0 0)’,-1)).

The SQL query that retrieves the violating objects becomes:

SELECT u.uuid as failedObjects,

u.pk 1, ..., u.pk n, <ed add idattrib>,

u.g as failedGeometries

FROM Constraining Union u

WHERE Neg Topo Condition(u.g, u.f union, rel1|...|reln)

where: Neg Topo Condition(g,f,rel1 | . . . | reln) = ST XXXn+1(g,f) OR

. . . OR ST XXXm(g,f) and ST XXXn+1, . . ., ST XXXm is the set of PostGIS
topological relations corresponding to the GeoUML topological relations ob-
tained as: ST XXXn+1, . . ., ST XXXm = RelTopo \ {rel1, . . ., reln}

Example 4 Let us consider again the Road and RoadArea classes of the
first example. Instead of requiring that for each road there exists a road area
that contains it, suppose now to require that each road has to be contained
into the union of the road area instances:

constraint Road.path (IN) union RoadArea.extent

In this case the queries for creating the temporary table and checking the
constraint become:

CREATE TABLE Constraining Union AS(

SELECT x.uuid, x.g,

coalesce(ST union(y.f),empty geometry) as f union

FROM Constrained x LEFT JOIN Constraining y ON

ST Intersects(x.g,y.f)

WHERE true

GROUP BY x.uuid, x.g)

SELECT u.uuid as failedObjects, u.g as failedGeometries

FROM Constraining Union u

WHERE (ST Disjoint(x.g,y.f) OR

33

ST Touch(x.g,y.f) OR

ST Contains(x.g,y.f) OR

ST Overlap(x.g,y.f) OR

ST Crosses(x.g,y.f) OR

ST Intersect(x.g,y.f))

4.1.6 Universal topological constraint

The universal topological constraint requires that the relation is valid be-
tween the constrained object and all the instances of the constraining class.

constraint <constrained class expr> (rel1 | . . . | rel2)
forAll <constraining class expr>

An instance x of the constrained class X violates a universal topological
constraint if there exists at least one instance y of the constraining class Y
whose spatial attribute f has a relation with the spatial attribute g of x not
included in the set (rel1 | . . . | reln). Therefore, the universal topological
constraint can be checked through the following SQL query template:

SELECT x.uuid as failedObjects,

x.pk 1, ..., x.pk n, <add idattrib ed>
x.g as failedGeometries

FROM Constrained x, Constraining y <espr from vincolo>
WHERE <const where expr>

Neg Topo Condition(x.g, y.f, rel1|...|reln)

where Neg Topo Condition(g,f,rel1 | . . . | reln) = ST XXXn+1(g,f) OR

. . . OR ST XXXm(g,f) and ST XXXn+1, . . ., ST XXXm is the set of PostGIS
topological relations corresponding to the GeoUML topological relations ob-
tained as: ST XXXn+1, . . ., ST XXXm = RelTopo \ {rel1, . . ., reln}.

Note that if <constrained class> = <constraining class>, then
the condition x.uuid <> y.uuid AND has to be added into the <const whe-

re expr> clause.

Example 5 Let us consider the RoadArea class presented in Example 1
and a Building class translated in the following table:
Table Building

uuid: varchar(64)

<Building attributes>
extent: polygon

34

In order to check the constraint that a building can only touch or be dis-
joint from every road area:

constraint Building.extent (DJ|TC) forall RoadArea.extent

the query template has to be instantiated as follows:

SELECT x.uuid as failedObjects, x.g as failedGeometries

FROM Constrained x, Constraining y

WHERE (ST Within(x.g,y.f) OR

ST Contains(x.g,y.f) OR

ST Overlap(x.g,y.f) OR

ST Equal(x.g,y.f))

4.2 Part-Whole Constraints Validation

This section deals with the translation into SQL queries of the GeoUML
part-whole constraints presented in Section 2.3.2.

4.2.1 Strong composition constraint

In order to check that the spatial attribute f of the constrained class X is
equal to the union of the spatial attribute g of one or more instances of the
constraining class Y :

constraint <constrained class expr>
composedOf <constraining class expr>

we first create a temporary table that, for each instance x of the constrained
class, contains the spatial union of the instances of the constraining class
Y, whose spatial attribute f is within the spatial attribute of x. The query
template for creating this table is:

CREATE TABLE Constraining Compo AS(

SELECT x.uuid, x.g,

x.pk 1, ..., x.pk n, <ed add idattrib>,

coalesce(ST union(y.f), empty geometry) as f union

FROM CONSTRAINED x LEFT JOIN CONSTRAINING y ON

ST Contains(x.g, y.f) OR

ST Covers(x.g, y.f) OR

35

ST Equals(x.g, y.f)

<const from expr>
WHERE <const where expr>
GROUP BY x.uuid, x.g, x.pk 1, ..., x.pk n,

<ed add idattrib>)

CREATE INDEX Constraining Compo Index ON

Constraining compo USING GIST (f)

This template can be instantiated according to the constrained and the con-
straining class expression, as done for the topological constraint templates.

After the creation of this temporary table, the following query can be
performed in order to find the X instances whose spatial attribute is not
equal to the computed union of the spatial attributes of Y instances:

SELECT u.uuid as failedObjects,

u.pk 1, ..., u.pk n,
<add idattrib ed>
u.g as failedGeometries

FROM Constraining Compo u

WHERE NOT ST Equals(u.g, u.f union)

As usual, this template has to be instantiated according to the particular
constrained and constraing class expressions.

Example 6 Let us consider two classes Region and County which are trans-
lated into the following two tables:

Table Region Table County

uuid: varchar(64) uuid: varchar(64)

<Region attributes> <County attributes>
extent: polygon extent: polygon

In order to check the constraint that the region extent has to be equal to the
union of the extent of some countries:

constraint Region.extent composedOf County.extent

the query template for creating the table and checking the constraint become:

CREATE TABLE Constraining Compo AS (

SELECT x.uuid, x.g,

36

coalesce(ST union(y.f), empty geometry) as f union

FROM Constrained x LEFT JOIN Constraining y ON

ST Contains(x.g,y.f) OR

ST Covers(x.g,y.f) OR

ST Equals(x.g,y.f)

WHERE true

GROUP BY x.uuid, x.g)

SELECT u.uuid as failedObjects, u.g as failedGeometries

FROM Constraining Compo u

WHERE NOT ST Equals(u.g,u.f union)

4.2.2 Weak composition constraint

As in the previous case we build a temporary table, named Constraining W

Compo, which contains for each instance x of the constrained class X, the
spatial union of the instances of the constraining class Y whose spatial at-
tribute is within the spatial attribute of x.

CREATE TABLE Constraining WCompo AS (

SELECT x.uuid, x.g,

x.pk 1, ..., x.pk n, <ed add idattrib>,

coalesce(ST union(y.f), empty geometry) as f union

FROM CONSTRAINED x LEFT JOIN CONSTRAINING y ON

ST Intersect(x.g,y.f)

<const from expr>
WHERE <const where expr>
GROUP BY x.uuid, x.g, x.pk 1, ..., x.pk n, <ed add idattrib>)

CREATE INDEX Constraining wcompo Index ON

Constraining wcompo USING GIST (f)

The constraint template query becomes:

SELECT u.uuid as failedObjects,

u.pk 1, ..., u.pk n,
<ed add idattrib>
u.g as failedGeometries

FROM CONSTRAINING WCOMPO u

WHERE NOT ST Within(u.g, u.f union)

37

4.2.3 Membership constraint

The basic membership constraint can be translated into the query template
defined for the existential topological constraint in which the relation required
is fixed to IN. Instead, a particular attention is required for the disjoint (dj-
IN) and weak-disjoint (wdj-IN) membership constraints. The disjoint mem-
bership constraint:

constraint <constrained class expr>
dj-IN <constraining class expr>

an instance x of the constrained class X violates the constraint, if either:
(1) its spatial attribute g is not contained into the spatial attribute f of
any constraining instance y of Y, or (2) between g and the spatial attribute
any other instance x’ which is contained in the same f there exist a relation
different from “disjoint or touch”.

Therefore given the Constrained and Constraining tables built as above,
the check of this constraint is performed in two steps: first the IN topological
constraint is checked:

constraint <constrained class expr> (IN)

exists <constraining class expr>

If this constraint is not satisfied the validation can terminate, otherwise the
second step is performed which checks the disjunction of the “brothers” of
x and returns the pairs of brothers that violate the DJ/IN constraint. The
query that implements this second step is:

SELECT x1.uuid as failedObjects1,

x1.pk 1, ..., x1.pk n,
x1.g as failedGeometries1

x2.uuid as failedObjects2,

x2.pk 1, ..., x2.pk n,
x2.g as failedGeometries2

FROM Constrained x1, Constrained x2

WHERE x1.uuid <> x2.uuid AND

EXISTS (SELECT * FROM Constraining y

WHERE ST Within(x1.g,y.f) AND

ST Within(x2.g,y.f)) AND

NOT(ST Disjoint(x1.g,x2.g) OR ST Touches(x1.g,x2.g))

38

The query template for the wdj-IN constraint is very similar to the one
presented above. Compared to that one, the ST Cross(x1.g, x2.g) rela-
tion has to be added in the where clause, as well as a test on the dimension
of the geometric objects involved, in order to verify that they are both of
linear type.

Example 7 Let us consider two classes Region and County, both with a
polygonal spatial extent attribute. In order to check that each county extent
has to be contained into a region and has to touch or be disjoint from the
extent of all the other counties in the same region:

constraint County.extent dj-IN Region.extent

the query for checking the constraint become:

SELECT x1.uuid as failedObjects1,

x1.g as failedGeometries1

x2.uuid as failedObjects2,

x2.g as failedGeometries2

FROM Constrained x1, Constrained x2

WHERE x1.uuid <> x2.uuid AND

EXISTS (SELECT * FROM Constraining y

WHERE ST Within(x1.g,y.f) AND

ST Within(x2.g, y.f)) AND

NOT(ST Disjoint(x1.g,x2.g) OR ST Touches(x1.g,x2.g))

4.2.4 Partition Constraint

As mentioned above a partition constraint can be obtained combining the
strong composition constraint with a disjoint or weak-disjoint membership
constraint. Therefore, in order to find the constrained instances that violate
a particular partition constraint, it is enough to merge the result produced
by the query for the strong composition constrain with the result produced
by the query for the (weak-)disjoint membership constraint.

References

[1] Alberto Belussi, Mauro Negri, and Giuseppe Pelagatti. An iso tc 211
conformant approach to model spatial integrity constraints in the con-

39

ceptual design of geographical databases. In ER (Workshops), pages
100–109, 2006.

[2] Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. A small
set of formal topological relationships suitable for end-user interaction. In
SSD ’93: Proceedings of the Third International Symposium on Advances
in Spatial Databases, pages 277–295, London, UK, 1993. Springer-Verlag.

[3] Object Management Group. Object Constraint Language (OCL). Spec-
ification 06-05-01, OMG, 2006.

[4] Open GeoSpatial Consortium Inc. Specification for Geographic Informa-
tion - Simple Feature Access - Part 1: Common Architecture, 2006.

40

University of Verona
Department of Computer Science
Strada Le Grazie, 15
I-37134 Verona
Italy

http://www.di.univr.it

