

Progetto di Eccellenza Informatica per Industria 4.0

An holistic approach to Computer Engineering for Industry 4.0

Project Status

Franco Fummi

Computer Science Department University of Verona - Italy

UNIVERSITÀ di VERONA Diporimento d INFORMATICA

Agenda

- Project summary
- 2018 activities:
 - Organization
 - chart
 - international advisory board
 - industrial advisory board
 - New positions
 - professors, researchers
 - research assistants
 - Ph.D. students
 - Research activities
 - actual project description

- Industrial Computer Engineering (ICE) Laboratory
 - lab. Structure
 - Siemens agreement
- Degrees
 - Master Degree in Mathematics
 - Master Degree in Computer Engineering for Industry 4.0
- Dissemination
 - web pages
 - presentations
 - meeting and seminars
 - research contacts
- Roadmap 2019

PROJECT SUMMARY

Dipartimento di Eccellenza

- DI won the competition "Dipartimenti di Eccellenza 2018-2022" of the Ministry of Education, Universities and Research (MIUR)
 - research on a holistic approach to Computer Engineering for Industry 4.0
 - 8M€ funding
 - 15 new people
 - laboratories
 - new master degree

Industry 4.0: Enabling Technologies

Research Areas

- Discrete and computational mathematics
- Mathematics applications and modeling
- Theory of computation
- Software Engineering and Security
- Bioinformatics and Medical Informatics
- Information systems
- Machine intelligence
- Cyber-physical systems
- Experimental applied physics

Mathematics

Computer science

Computer engineering

Physics

Enabling Technologies and DI Research Areas

- TA1: Advanced manufacturing solutions
 - Cyber-physical systems
- TA2: Augmented reality & Additive manufacturing
 - Machine intelligence
- TA3: Simulation
 - Mathematics applications and modeling
- TA4: Industrial internet
 - Cyber-physical systems
- TA5: Cloud Cyber-security
 - Software Engineering and Security
- TA6: Big-data and analytics
 - Information systems

Objectives and Methodologies

Objectives:

- A. Safety and security
- B. Automatic design
- C. Diagnosis and maintenance

Methodologies:

- M1. High level specifications of a production line using formal methods (TA1)
- M2. **Design of the line** to compose verified basic elements (TA1, TA2, TA3)
- M3. Modeling of the system and of workflows using common description languages (TA2, TA4)
- M4. Integration of data flows and operation flows in one common representation environment (TA5, TA6)
- M5. Optimization of the process with typical techniques from operation research (TA3, TA4)
- M6. Verification of the line realization and of the process with (semi)formal methods based on efficient simulation of the line and process, and probabilistic identification methods (TA3, TA4)
- M7. Security and privacy analysis to compose assessed modules with application of uniform techniques on the data flow from IoT sensors to cloud (TA4, TA5)
- M8. Protection guarantee, with algorithms of interaction control with operators and users, and real-time estimation of the work environment (TA1, TA4)
- M9. Realization of remote assistance with telecontrol, network security protocols, quality of service analysis, and visualization methods based on augmented reality (TA2, TA5, TA6)

2018 ACTIVITIES: ORGANIZATION

Organization Chart

- Periodic meetings to check the project evolution
- Periodic reports to Department Committee (8 reports Jan-Sep 2018):
 - sharing information
 - taking decisions

International Advisory Board

- Alberto Luigi Sangiovanni Vincentelli
 - University of California at Berkeley USA
 - cyber-physical systems design
 - google scholar: cit. 60000 H 111
- Sukhan Lee
 - Sungkyunkwan University South Korea
 - robotics
- Samarjit Chakraborty
 - Technical University of Munich Germany
 - automotive and Industry 4.0
- They will periodically review the project:
 - report at beginning of Dec. 2018
 - feedback received by Feb. 2019
 - to be included in the first report for MIUR

Industrial Advisory Board (IAB)

- ACCIAIERIE DI VERONA S.p.A. Gruppo Pittini
- ASEM s.p.a.
- ATTUA S.r.l.
- Ball Beverage Packaging Italia S.r.l.
- Brevetti C.E.A. S.p.A.
- CAD.IT S.p.A.
- CLX Europe
- Derga Consulting
- Dgroove S.r.l.
- Exor International
- Ferretto Group S.p.A.
- Fiamm Energy Technology S.p.A.
- Gizero Energie s.r.l.
- Gruppo Italiano Vini
- Hdemy Group
- ICI Caldaie S.p.A.
- IDEA S.p.A. Gruppo Giordano
- Selected through a call
 - Periodic meetings
 - Documentation to be reviewed
 - Technical contacts for research projects

- Inerti S. Valentino S.r.l.
- KIRATECH S.p.A.
- Manni Group S.p.A.
- Maxfone S.r.l.
- OLIP Italia S.p.A.
- Plumake S.r.l. FabLab
- Qualitas Informatica S.p.A.
- Safilo S.p.A.
- Simem S.p.A.
- Sordato S.r.l.
- The Edge Company S.r.l
- Veronafiere S.p.A.
- Veronesi Holding S.p.A.
- Vetrerie Riunite S.p.A.
- Xilinx GmbH
- To Be Completed

2018 ACTIVITIES: NEW POSITIONS

Professors - Researchers

- Associate Professor (ING-INF/05)
 - Big-data and cloud computing
 - Elisa Quintarelli
 - previous position: associate professor at Politecnico di Milano
 - approved by the last July CdA meeting
 - starting activity: October 1 2018
- Associate Professor (INF/01)
 - Internet of Things privacy
 - Federica Paci
 - previous position: assistant professor at Southampton University
 - · to be approved at the next CdA meeting
 - planned starting activity: October 1 2018
- Researcher (RTDa INF/01)
 - Analysis and elaboration of large-scale data
 - Alberto Castellini
 - co-funded by the Regional (RIR) project PREMANI on digital manufacturing
 - to be approved at the next CdA meeting
 - planned starting activity: October 1 2018

- 2019 2020
- Researcher (RTDb INF/01)
 - Internet of Things security
 - identified candidates with national habilitation for associate professors
 - planned starting activity: October 2019
- Researcher (RTDb MAT/07)
 - Modeling, simulation, optimization of CPS
 - identified candidates with national habilitation for associate professors
 - planned starting activity: October 2019
- Researcher (RTDb ING-INF/04)
 - Automation of CPS
 - identified candidates with national habilitation for associate professors
 - planned starting activity: October 2019 March 2020

Research Assistants – PhD Students

- 2 two-year research assistants (AdR)
 - design of the ICE laboratory, research support, definition of practical laboratory classes
 - identified candidates
 - activities started: October 1 2018
- Ph.D. students:
 - 4 specific positions in the Computer Science Ph.D. course
 - 2 specific positions in the Mathematics Ph.D. course
 - all positively covered
 - activities started: October 1 2018
 - 4 specific positions in the Computer Science Ph.D. course
 - planed starting activities: October 1 2019

2018 ACTIVITIES: RESEARCH ACTIVITIES

The Holistic Approach

Project structure concretization

- Starting from the project description approved by MIUR:
 - complete English translation
 - for each enabling technology
 - extension of the state of the art
 - definition of 2018 and 2019 provisional milestones
 - to extend methodologies
 - for reaching project objectives
 - by measuring project indicators
- Actual project description documentation

TA1: Advanced manufacturing solutions (Cyber-physical systems)

- Develop new control and interaction methods for traditional and new cyber-physical devices:
 - Traditional machine tools and industrial robots
 - Cooperative robots
- Traditional devices:
 - Identify best sensor type, configuration and data processing algorithms to identify faults, measure performance and predict maintenance needs.
- Cooperative devices:
 - Develop training, applications and technologies for new low cost robots.

TA1: Advanced manufacturing solutions (Cyber-physical systems)

- New sensors and algorithms will permit to give high level decision capabilities to cyber-physical systems through extensive data collection, process modeling, machine reasoning and new Human-Robot-Interfaces
- We aim to achieve full integration of machine accuracy and human experience in the design, production and maintenance processes.

TA2: Augmented reality & Additive manufacturing

(Machine intelligence)

- Novel paradigms for user interaction
 - Mixed reality, scene augmentation, virtual reality training
 - Activity monitoring with tracking, multimodal data capture
 - System and user activity prediction with machine learning

3D modelling

 Computer graphics, geometry processing for digital manufacturing, virtual/mixed world content creation

TA2: Augmented reality & Additive manufacturing

(Machine intelligence)

- Objectives/evaluation
 - Validation of AR/VR interaction, gestural interaction prediction end monitoring on specific benchmarks
 - Tests of solutions for human body modelling and shape/appearance modelling and retrieval
 - Demos and scientific publications and presentations

- Advanced mathematical tools for the modelling of complex processes in modern applications: unmanned vehicles design, data-driven forecast, smart cities, logistics, cryptography, biomedical applications.
- Data-model comparison, analytics and numerical simulation of models (HPC knowledge, optimization, ...).

TA3: Simulation (Mathematics – applications and modeling)

- Development of efficient numerical schemes for control and simulation,
 HPC implementation and open-software platform with downloadable material.
- Scientific publications in peer-review journals, report and communications in international conference, and media press.

TA4: Industrial internet (Cyber-physical systems)

- Starting point
 - Asset identification and tracking through barcode and RFID
 - Wireless networks
 - Environmental sensors (e.g., temperature)

- Proposition: Industrial Internet of Everything
 - Global integration of produced objects, production machines and environmental sensors
 - Formalization of the manufacturing process to trap errors

TA4: Industrial internet (Cyber-physical systems)

Objectives

 Real-time identification and fixing of errors and failures in the production chain to save time and money

Performance indexes

- % coverage of various manufacturing processes
- % of trapped errors
- saved time
- saved money

© PAREXEL Int. Corp.

TA5: Cloud Cyber-security (Sw Engineering and Security)

Description

Cloud computing is becoming more and more integrated to the IoT paradigm and Cyber-Physical Systems (CPSs), adding an extra layer of vulnerability in already highly vulnerable systems.

Challenges:

- IoT devices are highly vulnerable due to weak authentication/authorization mechanisms
- Physical consequences of cyber-physical attacks put CPS security apart from IT security

Methodologies

- Authentication/authorization mechanisms for IoT security and privacy
- Static analysis and runtime analysis for CPS security
- Formal metrics to estimate the impact of cyber-physical attacks
- Integration of data flow and operation flows for web security
- Statistical methods and Artificial Intelligence techniques cyber-threat intelligence

TA5: Cloud Cyber-security (Sw Engineering and Security)

Objectives

Formal and (semi-)formal methodologies to formalize, statically detect and mitigate vulnerabilities in CPSs and IoT devices and applications

TA6: Big-data and analytics (Information systems)

- Characterization of the data
 - Heterogeneous sources must be harmonized
 - Data exploration: find relevant data
 - Knowledge filtering / mining
- Methodologies
 - Integration of data flows
 - Data visualization

- Objectives
 - Automatic design
 - Guided by the information extracted from the data
 - Diagnosis and maintenance
- Performance indexes
 - Successful application of new methodologies to enabling technologies

2018-2019 ACTIVITIES: INDUSTRIAL COMPUTER ENGINEERING (ICE) LABORATORY

Laboratory for Industry 4.0

- Modular infrastructure to develop, integrate and validate, commercial and custom solutions
- The laboratory will be based on a commercial backbone, specifications to be decided, on which various components will be integrated
- Many open questions:
 - Most relevant sw/hw architecture
 - Degree of modularity
 - Type of manufacturing process
 - Relevance of devices (sensors, robots...) used
 - Open vs custom solutions, i.e. academic vs commercial
 - IP protection and interaction among laboratory users
 - Training and support

ICE Laboratory - Where

ICE Laboratory - System Architecture - I

ICE Laboratory - System Architecture - II

ICE Laboratory – LAB Focus

ICE Laboratory – Digital Twin Focus

Siemens / CS Department Agreement

- Signed on Nov. 2018 for:
 - co-designing of the ICE lab.
 - sharing of methodologies and knowledge
 - joining use of the lab. facilities
 - contacting with technology providers
 - accessing to software and tools
 - ICE as a show-room to attract industrial research interests

Computer Engineering for Industry 4.0

Siemens Digital Factory outlook Integration from shop floor to top floor

SIEMENS

Ingegno per la vita

© Siemens Italia 2017

ACTIVITIES 2018-2019: DEGREES

Roadmap

- Mathematics for Industry 4.0:
 - addition of specific competences to the master degree in Mathematics
 - proposed by the Computer Science Department
 - formalized by the Mathematics Teaching Committee
 - approved by the School of Science and Engineering
 - activation: 2019-2020
- Computer engineering for Industry 4.0:
 - extension of the degree in Informatica to cover the basic competences for this master course
 - definition through the industrial advisory board
 - proposed by the Computer Science Department
 - formalized by the CS Teaching Committee
 - approved by the School of Science and Engineering
 - activation: 2019-2020
 - master degree in Computer engineering for Industry 4.0
 - working team defined by the Computer Science Department
 - definition of the proposal by March 2019
 - activation: 2020-2021

Master Degree in Mathematics

- Enriched with courses in:
 - Foundations of data analysis (6cfu MAT/08)
 - Statistical learning (3cfu MAT/06 + 3cfu INF/01)
 - Laboratory classes in:
 - Computational geometry (MAT/03),
 - Numerical methods for partial diff. eq. (MAT/08),
 - Numerical modelling and optimization (MAT/07-MAT/08)
- Educational program status:
 - Approved by the Department of Computer Science
 - Approved by the School of Science and Engineering
 - Approved by the Academic Senate

Computer Engineering for Industry 4.0

optimization simulation

Cloud

TA3. Simulation

data analysis security / privacy

big data

TA2. Augmented Reality,

cloud computing

architecture cloud

TA5. Cloud, Cyber-Security

embedded software

middleware

TA6. Big-Data and Analytics

operating systems embedded systems

TA4. Industrial Internet

Field bus / wireless networks

sensors /actuators

TA1. Advanced Manufacturing Solutions

- Students trained in:
 - Industrial computer engineer
- Main skills:
 - Knowledge of the entire computing hierarchy from sensors to cloud
 - Experience with the 3C paradigm (computing, control, communication) and mechatronic engineering
 - Focus on solid computer science basis applied to the fields of robotics, cyber-physical systems, artificial intelligence, and big data analytics.

Assumptions and View

- Students will enter the Master degree with solid Computer Science knowledge and basic engineering skills, with respect to standard Computer Science bachelor students
- In particular, they will have knowledge about:
 - automatic control
 - signals analysis
- Global view:
 - Industry 4.0 is based on a set of enabling technologies that require high-level and widespread computer engineer skills
 - Industrial computer engineering is becoming the unified knowledge to design, integrate and manage industry 4.0 production plants
 - this produces he so-called digital manufacturing
 - Robotics technologies exploiting advanced cyber-physical systems have a crucial role to enable digital manufacturing
 - focusing industrial computer engineering to robotics and digital manufacturing is the main strategy for training engineers able to design, integrate and manage industry 4.0 production plants

Two-level Degree Structure

- Laurea (bachelor) degree in Computer Science
 - Enriched with courses in:
 - system and control and signals analysis
 - Approved
 - Activation expected by October 2019
- Master Degree in Industrial Computer Engineering:
 - Curricula will include courses in:
 - robotics,
 - cyber-physical systems design
 - artificial intelligence
 - cloud big-data security
 - industrial internet
 - advanced control strategies
 - Activation expected by October 2020

Industrial Computer Engineering vs. Computer Engineering

- ring
- During the Master degree, students will acquire knowledge in industrial engineering, such as:
 - Industrial Plant main characteristics
 - Computer Numerical Control (CNC) manufacturing
 - Computer Aided Design (CAD) techniques
 - Human Computer Interface (HMI) technologies
 - Industrial Electronics
- This knowledge differentiates the specific specializations of the Industrial Computer Engineering degree from a typical Computer Engineering Master degree
- Possible specializations will be:
 - Industrial robotic system designer
 - Industrial system integrator
 - Production programmer and analyst
- Possible master degree title:
 - Robotics & Smart Systems Engineering

Industrial Robotic System Designer

- Target professional figure:
 - Designer of robotic systems with advanced cyber-physical features
- Main knowledge to be acquired:
 - Modeling, specification and verification of Robotic systems
 - Specification of cyber-physical components and property analysis
 - Design of the networking infrastructure
 - Analysis and design of system controllers
 - Analysis and design of computing resources
 - Design of collaborative and cooperative robotic architectures
 - Techniques for safety and certification

Industrial Systems Integrator

- Target professional figure:
 - Integrator of robotic and cyber-physical systems into manufacturing and information management systems
- Main knowledge to be acquired:
 - Definition of machine tool properties from the point of view of data and processes
 - Identification of the most appropriate computing components
 - Definition of data sharing modes within the system architecture
 - Integration of components and processes
 - Optimization of processes and data flows
 - Integration of machine tools into the enterprise information system

Production Programmer and Analyst

- Target professional figure:
 - Production programmer and industrial data analysis expert
- Main knowledge to be acquired:
 - Analysis of production processes
 - Production program of industrial systems
 - Analysis and integration of production data
 - Analysis of data through machine learning techniques
 - Techniques for predictive maintenance
 - Techniques for quality control
 - Data security and privacy

Final Master Degrees Organization

Sicurezza dei Sistemi Informatici

Ingegneria del Software Sistemi Informativi e A.I.

- Linguaggi e Intelligenza Artificiale
- Algoritmi e Complessità
- Basi di dati e Verifica
- TBD

Ingegneria *e* Scienze Informatiche

Industrial Production Industrial Robotic System Programmer **Systems** Designer Integrator and Analyst **Robotics &** Smart **Embedded** Cyber-**Systems** Systems & **Physical** & Data IoT **Analytics Systems**

- Industrial plants & Production mgt.
- Dynamic systems (lab)
- Machine learning & Artificial intel.
- Discrete events systems (lab)

Robotics & Smart Systems Engineering

ACTIVITIES 2018: DISSEMINATION

Web Page and Presentation

Press release:

- Univr Magazine Marc 1 2018
- VeronaSera Marc 1 2018
- La Cronaca di Verona e del Veneto -Marc 1 2018
- TGR Veneto Marc 2 2018

Seminars and Meetings

Seminars:

- La sicurezza informatica ai tempi dell'Industria 4.0
 - Marc 26 2018
- Industry 4.0: Participatory Design as a process to share the benefits of automation
 - April 24 2018
- Industrial Advisory Board Constitution
 - May 10 2018
- Industrial research day
 - June 13 2018

Research Contacts

- Regional Innovation Network (RIR):
 - IMPROVENET (ICT for Smart Manufacturing Processes Veneto Network),
 - M3 Net (Precision mechanics, microtechnologies, additive manufacturing),
 - Veneto Clima ed Energia (companies specialized in thermo-mechanics),
 - ICT4SSL (ICT for Smart and Sustainable Living)
 - projects funded in for all RIRs
- SMACD Competence Center
 - ICE lab. In the set of dissemination laboratories

Companies:

- Ferretto Group
- Siemem
- Veronesi Holding
- Gruppo Italiano Vini
 - explored research activities
 - contracts to be defined

ROADMAP 2018-2019

2018 2019-Q1/Q2 Roadmap

- Distribution of the project proposal to each member of the IAB, completion of the Web page
 - end of May 2018 (DONE)
- Industrial research day (presentation to current students)
 - June (DONE)
- Definition of specification for the ICE laboratory
 - July (DONE)
- Computer Science Degree transformation proposal
 - July (DONE)
- First research report
 - December (DONE)
- Seminar on Industry 4.0 (Speedhub Joint Activity)
 - Mar. / Apr. / May 2019 (on-going)
- International procurement of the ICE lab.
 - Feb. / Mar. (on-going)
- Master degree draft proposal
 - Feb. / Mar. (on-going)
- ICE lab. first opening
 - Jul. (on-going)