
30

Bolchini · Ferrandi · Fummi

VHDL: vector indexes - 3

31

Bolchini · Ferrandi · Fummi

VHDL: vectors

➤ Types and subtypes
➤ Supported types are:

➤ Scalar
➤ Enumerated

➤ Integer

➤ Composite

➤ One dimensional arrays

VHDL
Synthesis
Subset

32

Bolchini · Ferrandi · Fummi

VHDL: Operators & Operands

➤ Arithmetic
➤ abs, **, /, mod, rem are not supported

➤ * supported only if:
➤ both operands are constant

➤ the second operand is a power of two

➤ physical, real, string and null literals are not
supported

33

Bolchini · Ferrandi · Fummi

!

VHDL: Operators & Operands

➤ Relational
entity ex is

port (A, B: in Integer range 0 to 15;

 Z: out boolean);

end ex;

architecture arch of ex is

begin

Z <= (A < B);

end arch; Usually supported
<, >, <=, >=, =, /=

These operators may require a large amount of area

34

Bolchini · Ferrandi · Fummi

VHDL Slices

package ops is

subtype WORD is bit_vector(1 to 16);

function asr (INP: WORD)

return WORD;

end ops;

package body ops is

function asr (INP: WORD)
return WORD is

variable RESULT: WORD;

begin

RESULT(1) := INP(1);

RESULT(2 to 16) := INP(1 to 15);

return RESULT;

end ;

end ops;

Need to be constant

35

Bolchini · Ferrandi · Fummi

VHDL functions

entity EX is

port (INPUT : in WORD ;

 OUTPUT : out WORD) ;

end EX ;

architecture EX_1 of EX is

begin

OUTPUT <= asr(asr(asr(INPUT))) ;

end EX_1 ;

➤ The synthesizer creates hardware each time the
function is used.

➤ Recursion is bound to a constant and not all tools
support it.

36

Bolchini · Ferrandi · Fummi

Some restrictions

➤ The synthesis subset suggests some
restrictions on the following elements:
➤ WAIT statement

➤ LOOP statement

➤ BLOCK statement

➤ GENERATE statement

37

Bolchini · Ferrandi · Fummi

WAIT restrictions

➤ The UNTIL clause is the only supported
clause:
WAIT UNTIL sig'EVENT AND sig= value;

➤ This statement has to be the first statement
of the process.

➤ Not supported:
➤ timeout clause (WAIT FOR 7ns)

38

Bolchini · Ferrandi · Fummi

LOOP restrictions

➤ The only allowed loop statements are FOR
loops.

FOR … IN … TO … LOOP

sequence of statements

END LOOP;

➤ The discrete range in a FOR iteration
scheme has to be static.

39

Bolchini · Ferrandi · Fummi

GENERATE & BLOCK

➤ They are not supported.
➤ No GUARDED BLOCK

➤ BLOCK statement is ignored

➤ The user must spend time to explicit what
these constructs would immediately
implement.

➤ Instead of the block statement hierarchy
should be used.

40

Bolchini · Ferrandi · Fummi

Synthesized circuits

➤ How to obtain the “desired” kind of circuit:
➤ Combinational

➤ Sequential

➤ Main problem:
➤ Be sure not to write code that “introduces”

memory elements.

41

Bolchini · Ferrandi · Fummi

Combinational synthesis

➤ Combinational networks may be obtaineed
by means of:
➤ logical/arithmetical relations (data flow)

➤ behavioral descritpion

➤ Attention is focused on:
➤ Assignment of all target signals in any possible

situation, otherwise memory elements are
necessary to store “old” values

42

Bolchini · Ferrandi · Fummi

Data flow

➤ Concurrent signal assignments

➤ It produces combinational networks
UNLESS:
➤ the waveform depends on the target signal, or

➤ the signal assignment originate a combinational
loop

Asynchronous circuit

43

Bolchini · Ferrandi · Fummi

Data flow - 1

library IEEE;
use IEEE.Std_logic_1164.all;

entity MUX21 is
port(load, data1, data2: in std_logic;
 s: out std_logic);

end MUX21;

architecture data_flow of MUX21 is
begin

s <= data1 when (load='1') else data2;
end data_flow;

Multip
lexer 2x1

44

Bolchini · Ferrandi · Fummi

Data flow - 2

library IEEE;

use IEEE.Std_logic_1164.all;

entity LATCH is

port(load, datain: in std_logic;

 s: buffer std_logic);

end LATCH;

architecture data_flow of LATCH is

begin

s <= datain when (load='1') else s;

end data_flow;

Multiplexer 2x1 with a

feedback loop or a latch

W
av

ef
or

m
 d

ep
en

ds
 o

n
ta

rg
et

 s
ig

na
l

45

Bolchini · Ferrandi · Fummi

Data flow - 1a/2a

Multip
lexer 2x1

Multiplexer 2x1 with a

feedback loop or a latch

46

Bolchini · Ferrandi · Fummi

Data flow - 3

library IEEE;
use IEEE.Std_logic_1164.all;
entity COMB is

port(load, in1, in2, data2: in std_logic;
 s: out std_logic);

end COMB;
architecture data_flow of COMB is

signal data1: std_ulogic;
begin

data1 <= in1 or in2;
s <= data1 when (load='1') else data2;

end data_flow;

Multip
lexer 2x1

47

Bolchini · Ferrandi · Fummi

Data flow - 4

library IEEE;
use IEEE.Std_logic_1164.all;
entity COMB is

port(load, in1, in2, data2: in std_logic;
 s: buffer std_logic);

end COMB;
architecture data_flow of COMB is

signal data1: std_ulogic;
begin

data1 <= in1 or s;
s <= data1 when (load='1') else data2;

end data_flow;

Multiplexer 2x1 with a

feedback loop or a latch

W
av

ef
or

m
 d

ep
en

ds
 o

n
ta

rg
et

 s
ig

na
l

48

Bolchini · Ferrandi · Fummi

Data flow - 3a/4a

Multiplexer 2x1

Multiplexer 2x1 with a

feedback loop or a latch

49

Bolchini · Ferrandi · Fummi

Behavioral

➤ Statements contained in (one) process

➤ A process which model pure combinational
logic has two main characteristics:
➤ The sensitivity list contains all signals that are

read inside the process

➤ All signal and variables are assigned in all
conditional branches of the process

50

Bolchini · Ferrandi · Fummi

Sequential synthesis

➤ Synchronous circuits

➤ One clock signal is identified and
eventually a reset signal (synchronous or
asynchronous)

➤ Behavioral description process

51

Bolchini · Ferrandi · Fummi

Process styles

➤ Four styles of processes are envisioned:
➤ Processes with a sensitivity list including all read

signals and assigning all signals and variables in all
conditional branches.

➤ Processes with a sensitivity list including all read
signals and assigning all variables in all conditional
branches.

➤ Processes with a wait statement for detecting clock
edges.

➤ Processes with a sensitivity list including a clock
signal and optionally an asynchronous reset signal.

52

Bolchini · Ferrandi · Fummi

Process “style 1”

➤ Processes with a sensitivity list including all read
signals and assigning all signals and variables in
all conditional branches.

➤ The sensitivity list will contain all the
intermediate signals

➤ It models pure combinational logic

53

Bolchini · Ferrandi · Fummi

Process “style 1”

ENTITY ao IS
 port(i0, i1, i2: IN BIT;

 out0: OUT BIT);
END ao;

ARCHITECTURE rtl OF ao IS
SIGNAL result: BIT;

BEGIN
PROCESS(i0, i1, i2, result)
BEGIN

result <= i0 AND i1;
out0 <= result OR i2;

END PROCESS;
END rtl; Intermediate signal

If result is not inserted
in the sensitivity list the
synthesis would provide
(when the tool provides
a synthesis) a complex

asynchronous sequential
circuit with an

event-triggered flip• flop.

54

Bolchini · Ferrandi · Fummi

Process “style 1”

➤ Signal assignments are updated at the end of the
process execution.

➤ Therefore result and out0 are updated at the same
time, out0 accessing the old value of result.

➤ To access the correct value of result, the process
must be re-executed following an update of result
to update out0 to the correct value.
This is done by placing the intermediate signal in
the process sensitivity list.

55

Bolchini · Ferrandi · Fummi

Process “style 1”

➤ Use of variables would resolve the problem
of inserting in the sensitivity list
intermediate signals.

➤ Intermediate signals with no other specific
functionality are inefficient.

...
PROCESS(i0, i1, i2)

VARIABLE result: BIT
BEGIN

result := i0 AND i1;
out0 <= result OR i2;

...

56

Bolchini · Ferrandi · Fummi

Process “style 2”

➤ Processes with a sensitivity list including all
read signals and assigning all variables in
all conditional branches.

Model a mixture of pure combinational logic
and asynchronous latches.

➤ Latches are inferred when signals are
not assigned in a conditional branch.

57

Bolchini · Ferrandi · Fummi

Process “style 2”

entity ANDGATE is
port(in1, in2: in std_logic;
 outp: out std_logic);

end ANDGATE;
architecture correct of ANDGATE is
begin

process(in1, in2)
variable x: std_logic;

begin
if (in1='1') then

x:=in2;
else

x := '0';
end if;
outp <= x;

end process;
end correct;

AND gate!

58

Bolchini · Ferrandi · Fummi

Process “style 2”

entity ANDGATE is
port(in1, in2: in std_logic;

 outp: out std_logic);
end ANDGATE;
architecture incorrect of ANDGATE is
begin

process(in1, in2)
variable x: std_logic;

begin
if (in1='1') then

x:=in2;
end if;
outp <= x;

end process;
end correct;

A level-sensitive
latch

59

Bolchini · Ferrandi · Fummi

Process “style 3”

➤ Processes with a WAIT statement as the
first statement of a process.

➤ It is a clocked circuit (synchronous
sequential machine)
➤ Finite State Machine (FSM)

➤ Moore & Mealy

WAIT UNTIL clk’EVENT and clk = ‘1’

