

• Introduction

• How to setup SCNSL

• How it works• How it works

• Examples and Exercises

• SystemC Network Simulation Library (SCNSL): is an extension of
SystemC to allow modeling packet-based networks such as wireless
networks, Ethernet, and fieldbus. As done by basic SystemC for
signals on the bus, SCNSL provides primitives to model packet
transmission, reception, contention on the channel and wireless path transmission, reception, contention on the channel and wireless path
loss. The use of SCNSL together with SystemC allows the easy and
complete modeling of distributed applications of networked
embedded systems such as wireless sensor networks, routers, and
distributed plant controllers

• Prerequisite:
– Linux operating system

– SystemC 2.0 or newer and TLM 2.0 must installed in your system (check
http://www.systemc.org)

– CMake

– C++ compiler and linker

• Create an empty directory in your home (e.g. work/) and enter it

• Download SCNSL from Sourceforge Bazaar repository
– $ bzr checkout bzr://scnsl.bzr.sourceforge.net/bzrroot/scnsl/trunk

• Uncompress the provided zip archive inside work/ folder

• Modify trunk/scripts/env-setup.sh
– Change SYSTEMC_DIR and TLM_DIR to point to your SystemC and TLM folders

– For people in ESD lab just copy env.setup.sh from the archive and overwrite
trunk/scripts/env-setup.sh

Run script env-setup.sh with the CPU type (32 or 64 bits):

• $. ../scripts/. env-setup.sh 32|64

Please note the space between “’.” and “env-setup.sh”

Create obj/ folder inside trunk/:

• $ mkdir obj; cd obj; cmake ..

• $ make• $ make

• $ make doc

• $ make install

To compile original examples

• $ cd ..

• $ cd /tests

• $ mkdir obj ; cd obj; cmake ..

• $ make

• $ make install

• Tasks are the system functionality which is under development. Thus, tasks
shall be implemented by designers either at RTL or TLM level. From the
point of view of a network simulator, a task is just the producer or consumer
of packets and therefore its implementation is not important. However, for
the system designer, task implementation is crucial and many operations the system designer, task implementation is crucial and many operations
are connected to its modeling, i.e., change of abstraction level, validation,
fault injection, HW/SW partitioning, mapping to an available platform,
synthesis, and so forth. For this reason the class TaskProxy_if_t has been
introduced, which decouples task implementation from the backend which
simulates the network. Each Task instance is connected to one or more
TaskProxy instances and, from the perspective of the network simulation
kernel, the TaskProxy instance is the alter-ego of the task. Viceversa, from
the point of view of the application, each TaskProxy can represent a sort of
socket interface, since it provides the primitives for network communication.

Tasks are hosted on Nodes, which are the abstraction of physical
devices. Thus, tasks deployed on different nodes shall communicate by
using the API provided by SCNSL for the network communication,
while tasks deployed on the same node shall communicate by using
standard SystemC communication primitives.standard SystemC communication primitives.

• Nodes creation:
Scnsl::Core::Node_t * n0 = scnsl->createNode();

• Channel setup:
CoreChannelSetup_t ccs;CoreChannelSetup_t ccs;

ccs.extensionId = "core";

ccs.channel_type = CoreChannelSetup_t::SHARED;

ccs.name = "SharedChannel";

ccs.alpha = 0.1;

ccs.delay = sc_core::sc_time(1.0, sc_core::SC_US);

ccs.nodes_number = 2;

• Channel creation:
Scnsl::Core::Channel_if_t * ch1 = scnsl->createChannel(ccs);

• Task ID:
const Scnsl::Core::task_id_t id3 = 3;const Scnsl::Core::task_id_t id3 = 3;

• Task Proxy:
const Scnsl::Core::size_t ONEPROXY = 1;

• Task Creation:
MyTask_t t3("Task3", id3, n3, ONEPROXY);

Protocol 802.15.4 creation:
CoreCommunicatorSetup_t ccoms;

ccoms.extensionId = "core";

ccoms.ack_required = true;ccoms.ack_required = true;

ccoms.short_addresses = true;

ccoms.type = CoreCommunicatorSetup_t::MAC_802_15_4;

MAC creation:
ccoms.name = "Mac0";

ccoms.node = n0;

Scnsl::Core::Communicator_if_t * mac0 =

scnsl->createCommunicator(ccoms);

Bind setup
BindSetup_base_t bsb1;

bsb1.extensionId = "core";

bsb1.destinationNode = n2bsb1.destinationNode = n2

bsb1.node_binding.x = 1;

bsb1.node_binding.y = 1;

bsb1.node_binding.z = 1;

bsb1.node_binding.bitrate =

Scnsl::Protocols::Mac_802_15_4::BITRATE;

bsb1.node_binding.transmission_power = 1000;

bsb1.node_binding.receiving_threshold = 1;

scnsl->bind(n1, ch, bsb1);

scnsl->bind(& t1, & t3, ch, bsb1, mac1);

scnsl->bind(n2, ch2, bsb2);

scnsl->bind(& t2, & t0, ch, bsb2, mac2);scnsl->bind(& t2, & t0, ch, bsb2, mac2);

Note: Node binding should be done from both sides

n1 -> ch -> n2 and n2 -> ch -> n1

NOTE: to compile tutorial examples, copy
and paste tests/ folder from the zip archive
into trunk/ overwriting the original oneinto trunk/ overwriting the original one

Sensor Collector

no n1

Proxy number: 1 1

ch

1. Calculate the minimum transmitting
power.

Suggestion : If the transmitting power is lower than the
minimum transmitting power, no packets will arrive to the
receiver. (Packet Loss Rate (PLR)=100%)

Sensor Collector

n0 n1 n2
Router

Sensor

Proxy number: 1 2 1

ch

Sensor

scnsl->bind(n0, ch, bsb0);

scnsl->bind(& sensor, & router, ch, bsb0, mac0);

scnsl->bind(n1, ch, bsb1);

scnsl->bind(& router, & collector, ch, bsb1, mac1);scnsl->bind(& router, & collector, ch, bsb1, mac1);

scnsl->bind(& router, NULL , ch, bsb1, mac1);

scnsl->bind(n2, ch, bsb2);

scnsl->bind(& collector , NULL, ch, bsb2, mac2);

1. Calculate the end-to-end delay

2. Calculate the single-hop delay

3. Calculate Packet Loss Rate3. Calculate Packet Loss Rate

– Use “grep” and “wc –l” BASH commands to
count sent and received packets.

4. Change the transmitting power to the
minimum and calculate the new PLR

There are N floors with
N rooms for each floor.

In each floor there is one
sensor for each room
which sends data to a
controller.

There is a separate
controller for each floor

Level N-1

Level N-2

Level 0

Idea: Network consists of a NxN matrix.
Nodes in the first column will work as a collector node (RX only) while other nodes as sensor nodes
(TX only)

Level N-1

Level N-2

Level 0

1. Write a simplified version of the scenario

– 1 floor with 3 nodes (1 collector and 2 sensors)

2. Calculate Packet Loss Rate2. Calculate Packet Loss Rate

– Use “grep” and “wc –l” BASH commands to count
sent and received packets.

3. Change the transmitting power to the minimum
needed by each sensor and calculate the new
PLR

