Foglio 8

Consegna mercoledì 6 aprile alle ore 11:30

Esercizio 1 (Punti 9). Si consideri l'endomorfismo $\phi_{\alpha}: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ dipendente dal parametro reale α e rappresentato dalla matrice

$$F_{\alpha} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ \beta & -1 & 0 & 0 \\ 0 & 0 & 1 & \beta \\ 0 & 0 & 0 & \beta \end{bmatrix}$$

- 1. Determinare per quali valori del parametro α l'endomorfismo ϕ_{α} è diagonalizzabile.
- 2. Per $\alpha = 3$ determinare una base di autovettori di \mathbb{R}^4 .
- 3. Si consideri l'endomorfismo ϕ_3 associato alla matrice F_3 . Scrivere la matrice associata a F_3 rispetto alla base di autovettori sia su dominio che codominio.
- 4. Il vettore $\vec{w} = \begin{bmatrix} 1 & 3 & -2 & 0 \end{bmatrix}^T$ appartiene all'immagine di F_3 ?

Esercizio 2 (Punti 6). Determinare la forma diagonale o la forma canonica di Jordan della matrice

$$C = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Esercizio 3 (Punti 8). Sia $A \in M_{n \times n}(\mathbb{K})$. Dimostrare che A e A^T hanno gli stessi autovalori, ma non necessariamente gli stessi autovettori.

N.B.

Il simbolo • denota esercizi giudicati difficile.