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Introduction

• A Boolean function can be described providing

– ON-set

• OFF-set is the complement of the ON-set

• The DC-set is empty

– ON-set and DC-set

• OFF-set is the complement of the union of ON-set and DC-set

– ON-set and OFF-set

• DC-set is the complement of the union of ON-set and OFF-set

• A Boolean function is completely described by 

providing its ON-set, OFF-set and DC-set
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espresso – U.C. Berkeley

• espresso is a tool developed by the CAD group at 

U.C. Berkeley

(software developer: Richard L. Rudell)

• Current release is the #2.3

– Release date 31st January 1988

• espresso is a program for two-level Boolean 

minimization
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espresso – Boolean Minimization
• Input:

– A sum-of-product (SOP) representation of a two-valued (or 
multi-valued) Boolean function

• Output:
– A minimal equivalent SOP representation
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espresso – Basic usage

$> espresso [options] [in_file] [>out_file]

• Reads the in_file provided

– Or the standard input if no file is specified

• Writes the minimized results in out_file

– standard output if the output is not redirected
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Example - Adder
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cinbinaincinbinaincinbinaincinbinaincout

cinbinaincinbinaincinbinaincinbinainsum

********

********





ain bin cin sum cout

0 0 1 1 0

0 1 0 1 0

1 0 0 1 0

1 1 1 1 1

1 1 0 0 1

0 1 1 0 1

1 0 1 0 1



espresso – Input file format (syntax)

• espresso accepts specifications described as a 

character matrix with keywords embedded

– Keywords specify:

• The size of the matrix

• The format of the function

– Comments:

• Allowed using #

– Whitespaces:

• Blanks, tabs … are ignored
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espresso – Input file format (semantics)

• Semantics of input part

– The format of the function

• each position in the input matrix corresponds to an 

input variable where:
– “0” implies the corresponding input literal appears complemented 

in the product term

– “1” implies the input literal appears uncomplemented in the 

product term

– “-” implies the input literal does not appear in the product term
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espresso – Input file format (semantics)

• Semantics of output part
– Specifying the format of the function

• type f:
– for each output, a 1 means this product term belongs to the ON-

set, and 0 or – means this product term has no meaning for the 
value of this function

• type fd:
– for each output, a 1 means this product term belongs to the ON-

set, – implies this product term belongs to the DC-set and a 0
means this product term has no meaning for the value of this 
function

– it is the default type

• type fr:
– for each output, a 1 means this product term belongs to the ON-set, a 0

means this product term belongs to the OFF-set, and a – means this 
product term has no meaning for the value of this function

• type fdr:
– for each output, a 1 means this product term belongs to the ON-set, a 0

means this product term belongs to the OFF-set, a – means this product 
term belongs to the DC-set, and a ~ implies this product term has no 
meaning for the value of this function
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espresso – Input file keywords (I)

• The following keywords 
are recognized by 
espresso:
– .i [d]

• specifies the number “d” of 
input variables

– .o [d]
• specifies the number “d” of 

output variables

– .type [s]
• specifies the logical 

interpretation of the output 
part of the character matrix

• this keyword must come 
before any product term

• [s] is one of “f” “fd” “fr” “fdr”

– .e
• optionally marks the end of 

the description
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# num of input vars
# e.g., ain, bin, cin
.i 3
# num of output functions
# e.g., sum, cout
.o 2

.type fr
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
.e



espresso – Input file keywords (II)
–.ilb [s1] [s2] ..
[sn]

• gives the names of the 

binary-valued variables

• must come after .i and .o

• as many tokens as input 

variables

–.ob [s1] [s2] .. [sn]

• gives the names of the 

output function

• must come after .i and .o

• as many tokens as 

output variables
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.i 3

.o 2

.ilb ain bin cin

.ob sum cout

.type fr
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
.e



espresso – input file keywords (III)

–.phase [b1] [b2] .. [bn]

• specifies the phase of each output
– positive (1) or negative (0)

• must come after .i and .o

• as many tokens as output variables

–.p [d];

• specifies the number [d] of products

• optional
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espresso – input file keywords (IV)

• Possible to use multi-valued variable

– .symbolic [s0]..[sN] ; [t0] .. [tM] ;

• the binary variables named [s0] thru [sN] must be 

considered as a single multiple-valued variable

• variable with 2N parts corresponding to the decodes of 

the binary-valued variables

• [s0] is the most significant bit, [sN] is the least significant 

bit 

• [t0] .. [tm] provide the labels for each decode of [s0] thru 

[sN]

– .mv [num_var] [num_bin_var] [d1] [dN]

• specifies the number num_var of variables, the number 

num_bin_var of binary variables and the size of each of 

the multiple-valued variables (d1 through dN)
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espresso – input file keywords (V)
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.i 4

.o 3

.ilb ain<1> ain<0> bin<1> bin<0>

.ob sum<1> sum<0> cout

.symbolic ain<1> ain<0>

.symbolic bin<1> bin<0>

.symbolic sum<1> sum<0>

0 0  0 0   0 0  0
0 0  0 1   0 0  1
0 0  1 0   0 1  0
0 0  1 1   0 1  1
0 1  0 0   0 0  1
…

…

0 1  0 1   0 1  0
0 1  1 0   0 1  1
0 1  1 1   1 0  0
1 0  0 0   0 1  0 
1 0  0 1   0 1  1
1 0  1 0   1 0  0
1 0  1 1   1 0  1
1 1  0 0   0 1  1
1 1  0 1   1 0  0
1 1  1 0   1 0  1
1 1  1 1   1 1  0
.e



espresso – Options (I)

• Interesting options for running espresso are:

–-Dcheck

• checks that ON-set, OFF-set, DC-set are disjoint

–-Dexact

• performs exact minimization (potentially expensive)

–-Dmany

• reads and minimizes all PLA defined into the input 

file

–-Dopo

• performs output phase optimization, i.e., reduce the 

number of terms needed to implement the function 

or its complement
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espresso – Options (II)

–-Dverify

• checks for Boolean equivalence of two functions

• requires two filenames from command line

–-Dequiv

• identifies output variables which are equivalent

–-Dso

• minimizes each function one at time as a single-

output function

–-epos

• swaps the ON-set and OFF-set of the function after 

reading the function

• useful for minimizing the OFF-set of a function
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Options (III)

–-v ‘’

• verbose debugging details

• ‘’ activates all details

–-d

• enables debugging

–-o [type]

• selects the output format

• type can be:
– f: only On-set

– fd: ON-set and DC-set

– fr: ON-set and OFF-set

– fdr: ON-set, OFF-set and DC-set
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U.C. Berkeley – Official release

• Official espresso release is available at

http://embedded.eecs.berkeley.edu/pubs/downlo

ads/espresso/index.htm

– Source code

– Examples

– Man pages for espresso
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http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm


Lab configuration for espresso
• Before starting:

– Create the installation directory:

• $> mkdir sse_tools

• Laboratory computers or Linux x86_64
– Download the binaries from the e-learning in the installation directory

– Unzip it

• $> tar xzfv espresso_binaries.tar.gz
• $> cd espresso

• Other unix-based O.S. (support not tested)
– Download the sources from the e-learning in the installation directory

– Unzip it

• $> tar xzfv espresso_srcs.tar.gz
– Compile it

• $> cd espresso && make

• Final steps:
– Export the path to the executable

• $> export PATH=$PATH:$(pwd)/bin
– If you want, you can add the export of the path to your .bashrc file

• Windows:
– .exe available on the e-learning
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Man pages
• Man pages are available

– http://user.engineering.uiowa.edu/~switchin/OldSwitch
ing/espresso.5.html

• PLA format manual (espresso.5)
– see examples

• #1, a two bit adder

• #2, multi-valued function

• #3, multi-valued function setup for kiss-style 
minimization 

• espresso usage manual (espresso.1)
– List options by espresso -h
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Exercise 1
• The Indian society of Natchez, who lived in North America, was 

divided into four groups: Suns, Nobles, Honorables, Stinkards.

In this society, marriages were allowed according to specific rules, 

and the corresponding progeny belongs to a particular group as 

described in the following table:

• Other combinations are not allowed
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Mother Father Progeny

Sun Stinkard Sun

Noble Stinkard Noble

Honorable Stinkard Honorable

Stinkard Sun Noble

Stinkard Noble Honorable

Stinkard Honorable Stinkard

Stinkard Stinkard Stinkard



Exercise 2 (I)

• Formulate the minimum map coloring problem 

(coloring a map with the minimum number of 

colors such that adjacent regions don’t have the 

same color) as a logic minimization problem.

• Apply your formulation to the following map and 

use espresso to find a minimum coloring for the 

map.
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Exercise 2 (II)
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