
Espresso
Two-level Boolean Minimization

University of Verona

Dep. Computer Science

Italy

Michele Lora

Tiziano Villa

Slides courtesy of Giuseppe and Luigi Di Guglielmo, Davide Bresolin, Michele Lora and Tiziano Villa



Agenda

• Introduction

• espresso - two-level Boolean minimization

• espresso – input file

– Description format

– Keywords

• espresso – Options

• Excercises

25/10/2016 Design Automation of Embedded Systems 2



Introduction

• A Boolean function can be described providing

– ON-set

• OFF-set is the complement of the ON-set

• The DC-set is empty

– ON-set and DC-set

• OFF-set is the complement of the union of ON-set and DC-set

– ON-set and OFF-set

• DC-set is the complement of the union of ON-set and OFF-set

• A Boolean function is completely described by 

providing its ON-set, OFF-set and DC-set

25/10/2016 Design Automation of Embedded Systems 3



espresso – U.C. Berkeley

• espresso is a tool developed by the CAD group at 

U.C. Berkeley

(software developer: Richard L. Rudell)

• Current release is the #2.3

– Release date 31st January 1988

• espresso is a program for two-level Boolean 

minimization

25/10/2016 Design Automation of Embedded Systems 4



espresso – Boolean Minimization
• Input:

– A sum-of-product (SOP) representation of a two-valued (or 
multi-valued) Boolean function

• Output:
– A minimal equivalent SOP representation

25/10/2016 Design Automation of Embedded Systems 5

Function 
specification

Function 
specification

read
Optimization /

Verification

Formats:
1. equations
2. matrix
3. kiss 

Formats:
1. equations
2. matrix
3. kiss 

1. Function minimization
2. Equivalence checking
1. Function minimization
2. Equivalence checking



espresso – Basic usage

$> espresso [options] [in_file] [>out_file]

• Reads the in_file provided

– Or the standard input if no file is specified

• Writes the minimized results in out_file

– standard output if the output is not redirected

25/10/2016 Design Automation of Embedded Systems 6



Example - Adder

25/10/2016 Design Automation of Embedded Systems 7

cinbinaincinbinaincinbinaincinbinaincout

cinbinaincinbinaincinbinaincinbinainsum

********

********





ain bin cin sum cout

0 0 1 1 0

0 1 0 1 0

1 0 0 1 0

1 1 1 1 1

1 1 0 0 1

0 1 1 0 1

1 0 1 0 1



espresso – Input file format (syntax)

• espresso accepts specifications described as a 

character matrix with keywords embedded

– Keywords specify:

• The size of the matrix

• The format of the function

– Comments:

• Allowed using #

– Whitespaces:

• Blanks, tabs … are ignored

25/10/2016 Design Automation of Embedded Systems 8



espresso – Input file format (semantics)

• Semantics of input part

– The format of the function

• each position in the input matrix corresponds to an 

input variable where:
– “0” implies the corresponding input literal appears complemented 

in the product term

– “1” implies the input literal appears uncomplemented in the 

product term

– “-” implies the input literal does not appear in the product term

25/10/2016 Design Automation of Embedded Systems 9



espresso – Input file format (semantics)

• Semantics of output part
– Specifying the format of the function

• type f:
– for each output, a 1 means this product term belongs to the ON-

set, and 0 or – means this product term has no meaning for the 
value of this function

• type fd:
– for each output, a 1 means this product term belongs to the ON-

set, – implies this product term belongs to the DC-set and a 0
means this product term has no meaning for the value of this 
function

– it is the default type

• type fr:
– for each output, a 1 means this product term belongs to the ON-set, a 0

means this product term belongs to the OFF-set, and a – means this 
product term has no meaning for the value of this function

• type fdr:
– for each output, a 1 means this product term belongs to the ON-set, a 0

means this product term belongs to the OFF-set, a – means this product 
term belongs to the DC-set, and a ~ implies this product term has no 
meaning for the value of this function

25/10/2016 Design Automation of Embedded Systems 10



espresso – Input file keywords (I)

• The following keywords 
are recognized by 
espresso:
– .i [d]

• specifies the number “d” of 
input variables

– .o [d]
• specifies the number “d” of 

output variables

– .type [s]
• specifies the logical 

interpretation of the output 
part of the character matrix

• this keyword must come 
before any product term

• [s] is one of “f” “fd” “fr” “fdr”

– .e
• optionally marks the end of 

the description

25/10/2016 Design Automation of Embedded Systems 11

# num of input vars
# e.g., ain, bin, cin
.i 3
# num of output functions
# e.g., sum, cout
.o 2

.type fr
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
.e



espresso – Input file keywords (II)
–.ilb [s1] [s2] ..
[sn]

• gives the names of the 

binary-valued variables

• must come after .i and .o

• as many tokens as input 

variables

–.ob [s1] [s2] .. [sn]

• gives the names of the 

output function

• must come after .i and .o

• as many tokens as 

output variables

25/10/2016 Design Automation of Embedded Systems 12

.i 3

.o 2

.ilb ain bin cin

.ob sum cout

.type fr
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
.e



espresso – input file keywords (III)

–.phase [b1] [b2] .. [bn]

• specifies the phase of each output
– positive (1) or negative (0)

• must come after .i and .o

• as many tokens as output variables

–.p [d];

• specifies the number [d] of products

• optional

25/10/2016 Design Automation of Embedded Systems 13



espresso – input file keywords (IV)

• Possible to use multi-valued variable

– .symbolic [s0]..[sN] ; [t0] .. [tM] ;

• the binary variables named [s0] thru [sN] must be 

considered as a single multiple-valued variable

• variable with 2N parts corresponding to the decodes of 

the binary-valued variables

• [s0] is the most significant bit, [sN] is the least significant 

bit 

• [t0] .. [tm] provide the labels for each decode of [s0] thru 

[sN]

– .mv [num_var] [num_bin_var] [d1] [dN]

• specifies the number num_var of variables, the number 

num_bin_var of binary variables and the size of each of 

the multiple-valued variables (d1 through dN)

25/10/2016 Design Automation of Embedded Systems 14



espresso – input file keywords (V)

25/10/2016 Design Automation of Embedded Systems 15

.i 4

.o 3

.ilb ain<1> ain<0> bin<1> bin<0>

.ob sum<1> sum<0> cout

.symbolic ain<1> ain<0>

.symbolic bin<1> bin<0>

.symbolic sum<1> sum<0>

0 0  0 0   0 0  0
0 0  0 1   0 0  1
0 0  1 0   0 1  0
0 0  1 1   0 1  1
0 1  0 0   0 0  1
…

…

0 1  0 1   0 1  0
0 1  1 0   0 1  1
0 1  1 1   1 0  0
1 0  0 0   0 1  0 
1 0  0 1   0 1  1
1 0  1 0   1 0  0
1 0  1 1   1 0  1
1 1  0 0   0 1  1
1 1  0 1   1 0  0
1 1  1 0   1 0  1
1 1  1 1   1 1  0
.e



espresso – Options (I)

• Interesting options for running espresso are:

–-Dcheck

• checks that ON-set, OFF-set, DC-set are disjoint

–-Dexact

• performs exact minimization (potentially expensive)

–-Dmany

• reads and minimizes all PLA defined into the input 

file

–-Dopo

• performs output phase optimization, i.e., reduce the 

number of terms needed to implement the function 

or its complement

25/10/2016 Design Automation of Embedded Systems 16



espresso – Options (II)

–-Dverify

• checks for Boolean equivalence of two functions

• requires two filenames from command line

–-Dequiv

• identifies output variables which are equivalent

–-Dso

• minimizes each function one at time as a single-

output function

–-epos

• swaps the ON-set and OFF-set of the function after 

reading the function

• useful for minimizing the OFF-set of a function

25/10/2016 Design Automation of Embedded Systems 17



Options (III)

–-v ‘’

• verbose debugging details

• ‘’ activates all details

–-d

• enables debugging

–-o [type]

• selects the output format

• type can be:
– f: only On-set

– fd: ON-set and DC-set

– fr: ON-set and OFF-set

– fdr: ON-set, OFF-set and DC-set

25/10/2016 Design Automation of Embedded Systems 18



U.C. Berkeley – Official release

• Official espresso release is available at

http://embedded.eecs.berkeley.edu/pubs/downlo

ads/espresso/index.htm

– Source code

– Examples

– Man pages for espresso

25/10/2016 Design Automation of Embedded Systems 19

http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm


Lab configuration for espresso
• Before starting:

– Create the installation directory:

• $> mkdir sse_tools

• Laboratory computers or Linux x86_64
– Download the binaries from the e-learning in the installation directory

– Unzip it

• $> tar xzfv espresso_binaries.tar.gz
• $> cd espresso

• Other unix-based O.S. (support not tested)
– Download the sources from the e-learning in the installation directory

– Unzip it

• $> tar xzfv espresso_srcs.tar.gz
– Compile it

• $> cd espresso && make

• Final steps:
– Export the path to the executable

• $> export PATH=$PATH:$(pwd)/bin
– If you want, you can add the export of the path to your .bashrc file

• Windows:
– .exe available on the e-learning

25/10/2016 Design Automation of Embedded Systems 20



Man pages
• Man pages are available

– http://user.engineering.uiowa.edu/~switchin/OldSwitch
ing/espresso.5.html

• PLA format manual (espresso.5)
– see examples

• #1, a two bit adder

• #2, multi-valued function

• #3, multi-valued function setup for kiss-style 
minimization 

• espresso usage manual (espresso.1)
– List options by espresso -h

25/10/2016 Design Automation of Embedded Systems 21

http://user.engineering.uiowa.edu/~switchin/OldSwitching/espresso.5.html


Exercise 1
• The Indian society of Natchez, who lived in North America, was 

divided into four groups: Suns, Nobles, Honorables, Stinkards.

In this society, marriages were allowed according to specific rules, 

and the corresponding progeny belongs to a particular group as 

described in the following table:

• Other combinations are not allowed

25/10/2016 Design Automation of Embedded Systems 22

Mother Father Progeny

Sun Stinkard Sun

Noble Stinkard Noble

Honorable Stinkard Honorable

Stinkard Sun Noble

Stinkard Noble Honorable

Stinkard Honorable Stinkard

Stinkard Stinkard Stinkard



Exercise 2 (I)

• Formulate the minimum map coloring problem 

(coloring a map with the minimum number of 

colors such that adjacent regions don’t have the 

same color) as a logic minimization problem.

• Apply your formulation to the following map and 

use espresso to find a minimum coloring for the 

map.

25/10/2016 Design Automation of Embedded Systems 23



Exercise 2 (II)

25/10/2016 Design Automation of Embedded Systems 24


