Measurement
&
Performance

Topics

¢ Timers

¢ Performance measures
¢ Time-based metrics

& Rate-based metrics

¢ Benchmarking

¢ Amdahl’s law

The Nature of Time

real (i.e. wall clock) time

User Time: time spent executing instructions in the user
process

System Time: time spent executing instructions in the
kernel on behalf of the user process

%%

all other time (either idle or else executing instructions
unrelated to the user process)

- + //////% + = real (wall clock) time

Anatomy of a Timer

T,
| A ‘ k
Ti+l — Ti + A tick

& A counter value (T) is updated upon discrete ticks

& a tick occurs once every A\ time units

& upon a tick, the counter value is incremented by A time units
¢ Some Terminology:

¢ timer period = A seconds/tick
o timer resolution = 1/ ticks/second

Using Timers

JAN I* Tactual "l
%
time

T, T;
l, _ J
| Tobserved - Tf) Ts g

+ Estimating elapsed time:

¢ based on discrete timer values before (T,) and after (T;)
the event

& How close is T, cerveq 10 Toctual?

Timer Error: Example #1

¢ Tactual >
time ‘ ‘
Ts Tf
L, ,|
| Tobserved
Tactual: ~2A

Tobserved: A

Absolute measurement error: ~ £\
Relative measurement error: ~ A/ 2\ = ~ 50%

Timer Error: Example #2

Tactual
— —
%
T T;

. 4.|
| Tobserved

T.ciyal: € (~ zero)
Tobserved: A

Absolute measurement error: ~ £\
Relative measurement error: ~ A/ € = ~ infinite

Timer Error: Example #3

Tactual
— X —
time ‘ ‘ ‘
Ts :Tf
Tactual: X
Tobserved: 0

Absolute measurement error: X
Relative measurement error; X / X = 100%

Timer Error: Summary

t, t

e

A I Tactual g
%
time

T, T;
. _ |
| Tobserved - Tf - Ts |

& Absolute measurement error: +/- A

¢ Key point:
¢ need a large number of ticks to reduce error
& increase timer resolution (= 1/A ticks/second)

Performance

10

Performance expressed as a TIME

& Absolute time measures
¢ Difference between start and finish of an operation

¢ Examples:

« Running time (elapsed time, response time, latency, completion
time, execution time)

o Latency
o CPU time

¢ Most straightforward performance measure

& Relative (normalized) time measures

¢ Running time normalized to some reference time
« (e.g. time/reference time)

11

Performance expressed as a RATE

+ Rates are performance measures expressed in
units of work per unit time.

¢ Examples:
« millions of instructions / s (MIPS)
« millions of floating point instructions / s (MFLOPS)
« MB/s = 220 bytes / s
« Mb/s = 106 bits / s
« KB/s = 210 bytes / s = 1024 bytes / s
« Kb/s = 103 bits / s
« frames / s (fps)
« samples /s
« transactions / s (TPS)

12

TIME vs. RATE

Significance of the two classes of metrics depends
on the context/application/system type

¢ Time-based metrics:
Closer to the concept of performance

& Rate-based metrics:
Closer to the concept of throughput

¢ Example: \

Airplane Passengers Range (mi) Speed (mph) pXmph
Boeing 737-100 101 630 598 6[],398
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200

Douglas DC-8-50 146 8720 544 79424

13

Time-based metrics

¢ Execution time:

+ Wall-clock time elapsed from start to end of
computation

¢ Includes:
« CPU time
« I/O time
¢ Ex: UNIX'’s t i me command:

- 90. 7u 12.9s 2:39 65%

« 90.7 user seconds

« 12.9 system seconds

« 2:39 wall clock time

« 65% of the wall clock time was spent running on the CPU

¢ CPU time is closer to our notion of “performance”
¢ Measures actual CPU performance

14

CPU performance

¢ Use clock cycles to compute CPU performance:

N
CPU_ = N x T or | CPU =

Time cycles clock Time £

cycles

Clock
¢ Introducing the number of executed instructions N,

CI:)Utime = Ninst / Ninst * Ncycles>|< Tclock = Ninst * (Ncycles / Ninst) * Tclock

¢ (Neyaes / Nins) = number of clock cycles per
instruction = CPI
CPUtime =/Ninst * CPI * Tclock

7 1 AW
Compiler+ISA ISA Technology(+ISA)

15

CPU performance (2)

+ Previous formulation is too general!
¢ CPI is not single

+ Different (class of) instructions will take different
amounts of time

¢ Modified definition of CPI:

n
PL* T
CPU clock cycles for a program i; (CPL* 1) n I
CPI= _ = Z PT, =)
Instruction count I = I

C i

¢ Where:
 I. = number of instructions of type i in the program
« N = types or classes of instructions
« I. = total number of instructions in the program

16

CPU performance: example (1)

¢ A benchmark has 80 instructions:
& 25 instructions are loads/stores (each takes 2 cycles)
+ 50 instructions are adds (each takes 1 cycle)
5 instructions are square root (each takes 100 cycles)

CPI = ((25*2)+(50* 1)+ (5*100))/80
= (25/80 * 2) + (50/80 * 1) + (5/80 * 100) =
=7.5

17

CPU performance: example

¢ Two machines:

+ Machine A: conditional branch is performed by a
compare instruction followed by a branch instruction

+ Machine B performs conditional branch as one
instruction.

¢ On both machines, conditional branch takes two clock
cycles and the rest of the instructions take 1
clock cycle.
« A and B perform the same program
« A: 20% of instructions are compares, 20% are jumps
« B: 25% are conditional branches

¢ Finally, clock cycle time of A is 25% faster than B's
clock cycle time. Which machine is faster?

18

Solution

CPUtime = Ninst * CPI * Tclock

CPI, =1
CPU, = N, * CPL *t,= N, * 1 * t,

t, = 1.25%t,

CPI, = 0.25%2+0.75%1 = 1.25

CPUg = Ng* CPI * tg = Ng* 1.25 * t, = 0.8N,*1.25 * t,
= 0.8N,*1.25 * 1.25t, = N,*1.25%t,

A is faster!

19

CPU performance

¢ CPU time would be the “perfect metric”
¢ Time is exactly what we need

¢ However, it can be difficult to compute
¢ Lack of information (e.g., new ISA)

+ CPL cannot be a “static measure” (e.g., from a table)
o Instruction cache
o pipeline
. I/0

& How about some "average” measure?
¢ For instance, a rate-base metric

20

Rate-based metrics

¢ |Let’s review some commonly used (in the past)
rate-base metrics
¢ MHz
+ MIPS
+ MFLOPS

+ Always keep in mind:
CPUtime = Ninst *CPI * Tclock

21

Using MHz

¢ MHz = millions of clock cycles/sec

¢ MHz does not predict running time:
¢ CPUtime = [Ninst * CPI]* Tclock

¢ Example:
CPU MHz System CPU time
Pentium Pro 180 Alder 6,440

POWER?2 77 RS/6000 591 3,263

22

Using MIPS

¢ MIPS = millions of instructions / second
¢ Very used in the late 80’s / early 90's

N

ins f
MIPS = :

clock

CPU,,.. * 106 " P * 106

¢ Relation between CPU time and MIPS

CPU _ |\linst
time = MIPS * 106

23

Using MIPS

¢ MIPS is not suitable to measure performance:

+ MIPS is dependent on the instruction set

« Difficult to compare MIPS of computers with different
instruction sets

+ MIPS is dependent on the test program

& MIPS is used to measure the complexity of an
algorithm on a given platform
+ Not asymptotic but operative complexity

& Multimedia compression algorithms can be classified
according to MIPS

24

Using MIPS

¢ MIPS can vary inversely to performance

25

Using MIPS: Example

+ Optimizing compiler can Operation | Frequency | CPI
reduce 50% of ALU ALU ops | 43% 1
instructions only Loads 21% 2

¢ fioa = SOMHz (T4, = 20Nns) | Stores 12% 2

Branches 24% 2
¢ MIPSorlglnaI ? -

¢ IlePSoptimized =

CPI,o= 0.43%1+0.21%2+0.12%2+0.24%2 = 1.57
MIPS,,, =50%106 / (1.57 * 106) = 31.85

Plope = (0.43/2%1+0.21%2+0.12%2+0.24%2) / (1-0.43/2)
_173

MIPS,,; =50%106 / (1.73 * 106) = 28.90

Using MFLOPS

¢ MFLOPS = millions of floating operations /sec
¢ Same as MIPS, but referred to a specific instruction type

I

MFLOPS _ ¢, floating point
CPUtime * 106

+ Although focused on FP instructions only, same
iInconsistencies as MIPS

27

Benchmarking

28

Benchmarking

¢ Goal: Measure a set of programs (benchmarks)
that represent the workload of real applications
and that predict the running time of those
applications

& Steps in the benchmarking process:
(1) Choose representative benchmark programs.
« difficult to find realistic AND portable programs.

(2) Choose an individual performance measure
(for each benchmark)
« time, normalized time, rate?

(3) Choose an aggregate performance measure
(for all benchmarks)

« sum, normalized sum, mean, normalized mean?

29

Why Do Benchmarking?

¢ How we evaluate differences
¢ Different systems and changes to single system

+ Provide a target for system developers

¢ Benchmarks should represent large class of important
programs

+ Improving benchmark performance should help many
programs
¢ Benchmarks shape a field:

+ Good ones accelerate progress
« Good target for development

¢ Bad benchmarks hurt progress
« Inventions that help real programs don’t help benchmark

30

Benchmark examples

¢ (Toy) Benchmarks
+ 10-100 line
¢ e.g.,.puzzle, quicksort, ...

¢ Synthetic Benchmarks [early 90°s]
¢ attempt to match average frequencies of real workloads
¢ e.g., Whetstone, Dhrystone

¢ Kernels
+ Time critical excerpts of real programs
¢ e.g., Livermore loops, fast Fourier transform

¢ Real programs
¢ e.g., gcc, jpeg

31

Successful Benchmark Suite: SPEC

& 1987: processor industry mired in “"bench marketing”:
¢ "That is 8 MIPS machine, but they claim 10 MIPS!”

¢ 1988 : EE Times + 5 companies band together to perform
Systems Performance Evaluation Committee (SPEC) in
1988

¢ Sun, MIPS, HP, Apollo, DEC

+ Create standard list of programs, inputs, reporting:
& some real programs, includes OS calls, some I/O

¢ Currently SPEC is more than 40 computer companies:

¢ Compaq, Cray, DEC, HP, Hitachi, IBM, Intel, Motorola, Netscape,
SGI, Sun

Www. specbench. or g/ osg/

32

SPEC Benchmarks

¢ New incarnations required every three years:

+ SPEC89, SPEC92, SPEC95, SPEC2000.

+ Causes of benchmark obsolescence:
¢ increasing processor speed
& increasing cache sizes
increasing levels of caches
¢ increasing application code size
¢ library code dependences
& aggressive benchmark engineering

33

SPEC2000 integer benchmarks

Plays the game Go against itself.
processor running Dhrystone and
Compiles pre-processed source

into optimized SPARC assembly code.

Compresses large text files (about
16MB) using adaptive Limpel-Ziv coding.

Performs jpeg image compression

manipulations (anagrams/prime

Benchmark Ref Time (Sec) Application Area Specific Task

099.q0 4600 Game playing; artificial intelligence

124.mB8ksim 1900 Simulation Simulates the Motorola 88100
a memory test program.

126.g¢cc 1700 Programming & compilation

129.compress 1800 Compression

130.1 1900 Lanquage interpreter Lisp interpreter.

132iijpeq 2400 Imaging
with various parameters.

134.perl 1900 Shell interpreter Performs text and numeric
number factoring).

147 vortex 2700 Database

Builds and manipulates three
interrelated databases.

34

SPEC2000 floating point

benchmarks

Benchmark Ref Time (Sec) Application Area Specific Task
101.tomcaty 3700 Fluid Dynamics | Generation of a two-dimensional
Geometric Translation boundary-fitted coordinate system
around general geometric domains.
102.5wim 8600 Weather Prediction Solves shallow water equations using
finite difference approximations. (The
only single precision benchmark in CFP95.)
103.5u2cor 1400 Quantum Physics Masses of elementary particles are
computed in the Quark-Gluon theory.
104.hydro2d 2400 Astrophysics Hydrodynamical Navier Stokes equations are
used to compute galactic jets.
107.mgrid 2500 Electromagnetism Calculation of a 3D potential lield.
110.applu 2200 Fluid Dynamics/Math Solves matrix system with pivoting.
125.wrb3d 4100 Simulation Simulates turbulence in a cubic area.
141 apsi 2100 Weather Predication Calculates statistics on temperature
and pollutants in a grid.
145.1pppp 9600 Chemistry Performs multi-electron derivatives.
146.wave 3000 Electromagnetics Solve's Maxwell's eqn on cartesian mesh.

35

Benchmark performance

36

Comparing performance

& Execution time of a benchmark set matches CPU
time as close as possible

& But, how to measure it?

4 Exa m ple . Machine A | Machine B
Program 1 2 sec 4 sec
Program 2 12 sec 8 sec

¢ How much faster is A than B?

¢ Attempt 1: ratio of run times, normalized to A times
programl: 4/2 program2 : 8/12
« A 2x faster on program 1, 2/3x faster on program 2
« On average, Ais (2 + 2/3) /2 = 4/3 times faster than B

37

Comparing performance (2)

¢ Example (cont.):
o Attempt 2: ratio of run times, normalized to B times
program 1: 2/4 program 2 : 12/8
« A 2x faster on program 1 and 2/3x faster on program 2
« On average, (1/2+3/2)/2=1
« Ais 1.0 times faster than B
¢ Attempt 3: ratio of runtimes, total times, normalized to A
program 1: 2/4 program2 : 8/12
Machine A took 14 seconds for both programs
Machine B took 12 seconds for both programs
A takes 14/12 of the time of B
Ais 6/7 faster than B

38

Comparing performance (3)

¢ What is the right answer?

¢ All calculations answer different questions...
+ Not all “averages” correctly track execution time!
¢ Principle:

+ Conventional “average” is correct for absolute measures

« Arithmetic mean

¢ For rate-based measures:
- Harmonic mean

¢ For normalized measures:
. Geometric mean ?

39

Means and Ratios

¢ Metrics that track CPU time

¢ Total running time
¢ Normalized total running time
+ Arithmetic average of running times

1 —n
;Z,vzl Time,

¢ If not all benchmarks have equal importance:

weighted arithmetic mean

2. Weight xTime

40

Means and Ratios (2)

¢ Example:

Machine A
[s]

Machine B
[s]

Machine C
[s]

Total running time 60 90 60
Normalized total running time w.r.t. A 1 1.5 1
Normalized total running time w.r.t. B 0.66 1 0.66
Arithmetic Mean 30 45 30
Sum of normalized times w.r.t. A 2.0 2.5 2.5
Sum of normalized times w.r.t. B 2.5 2.0 4.25

A=C > B

41

Means and Ratios (Cont.)

¢ The harmonic mean (HM) is @ measure for rates
(and ratios in general) that predicts running time

¢ If Rateis the generic metric we want to average
over n programs n

1
2
Rate.

¢ If not all benchmarks have equal importance:

weighted harmonic mean
n

n Wei ht‘
Pt L
Rate .

42

Means and Ratios (2)

¢ Example:

Machine A
[s]

Machine B
[s]

Machine C
[s]

Total running time 60 90 60
Normalized total running time w.r.t. A 1 1.5 1
Normalized total running time w.r.t. B 0.66 1 0.66
Arithmetic Mean 30 45 30
Harmonic mean* 1.33 0.88 1.33

* = Usmg MIPS (progl= 40Minstr, prog2 = 40Minstr)

MIPS, prog1 = 2
MIPSg prog1 = 4
MIPSc prog1 = 1

MIPS) prog2 = 1
MIPSg prog2 = 0.5
, MIPSC progs = 2
HM, = 2/(1/2+1/1) = 2/(3/2) = 1.33
HMg = 2/(1/4+1/0.5) = 2/(9/4) = 0.88
HM. = 2/(1/1+1/2) = 2 (3/2) = 1.33

43

Means and Ratios (3)

¢ How to average normalized values?
+ Use geometric mean

GM = (I'l;_; , NormTime) 1
& Property of geometric mean
GM(Xi)/GM(Yi) = GM (Xi/Yi)
¢ GM is consistent over different references

¢ But is consistently wrong... !!
¢ It does not track running time!

44

Means and Ratios (4)

¢ Example:

Machine A
(/A, /B)

Machine B
(/A, /B)

Machine C
(/A, /B)
(2,4)

(0.5, 0.25)

Total running time 60 90 60
Total normalized time w.r.t. A 2 2.5 2.5
Total normalized time w.r.t. B 2.5 2 4.25
Arithmetic Mean (of times norm. w.r.t. A) 1 1.25 1.25
Arithmetic Mean (of times norm. w.r.t. B) 1.25 1 2.125
Geometric Mean (of times norm. w.r.t. A) 1 1 1
Geometric Mean (of times norm. w.r.t. B) 1 1 1

Not dependent on the reference!

45

SPEC CPU performance measures

¢ SPECfp index = (NT; X NT, X ... Xx NT)/

¢ This is a geometric mean

o Each NT, is a normalized time:
« = (ref. time for benchmark k)/(measured time for benchmark k)

« reference times are measured on a SparcStation 10/40
(40 MHz Supersparc with no L2 cache)

¢ Problem: SPEC performance measures don't
predict execution time!!!

system total time SPECfp95
166 MHz Pentium Pro 6470 5.47
180 MHz Pentium Pro 6440 5.40

46

Amdahl’s law

¢ Speeding up a small fraction of the execution time
of a program or a computation, the WHOLE
computation will not be speed up by the same
amount

¢ Example: 100s
10s
10x speedup
on this part _
1s

Total time = 100s (initial) O1s (after speedup)
Total speedup = 9/100 = 9%

47

Amdahl’s law (cont.)

¢ Definining speedup:

Old program (not enhanced)

T, = time that can NOT
T T '
1 I 2 be enhanced.

Oldtime: T=T,+T
1772 T, = time that can be

enhanced.
New program (enhanced) ¢ h
= p T,' = time after the
= <= 2
L,'=7 I T Tﬂ enhancement.

New time: T'=T," + T,

Speedup: S, ..., =T/ T

48

Amdahl’s law (cont)

¢ Two key parameters:

® Foranced = 1>/ T (fraction of original time that can be improved)
® S.hanced = 12/ T,' (speedup of enhanced part)

T = T1’ + -|-2, =T, + T2’ = T(l'Fenhanced) t T2’
= T(1-Fonnanced) + (To/Sennanced) [by def of Seihanced]

= T(l'Fenhanced) + T(Fenhanced / Senhanced) [by def. of I:enhanced]
= T((l'Fenhanced) + I:enhanced/ Senhanced)

e Amdahl’s Law:
Saverall = T/ T’ = 1/ ((1- enhanced) + F, enhanced/ Senhanced)

¢ Key idea:

+ Amdahl’s law quantifies the general notion of diminishing returns.
It applies to any activity, not just computer programs.

49

Time

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Amdhal law (cont.)

M—F
enhanced
——10%
——50%
70%
80%
——90%

e —

1 2 4 8 16 32 64 128 S

enhanced

50

Amdahl’s law: example

¢ Program runs for 100 seconds on a uniprocessor

¢ 50% of the program can be parallelized on a
multiprocessor

¢ Assume a multiprocessor with 5 processors (5x
faster)

Speedup = 1 =1/0.6 ~= 1.7
0.5 +(1-0.5)

5

e Bottomline:
e It is hard to speed up a program
o It is easy to make premature optimizations.

51

Conclusions

¢ Performance is important to measure
+ For architects comparing different deep mechanisms
+ For developers of software trying to optimize code, applications
+ For users, trying to decide which machine to use, or to buy

¢ Performance metrics are subtle

+ Easy to mess up the “machine A is XXX times faster than
machine B’ numerical performance comparison

+ You need to know exactly what you are measuring:
time, rate, throughput, CPI, cycles, ...

+ You need to know how combining these to give aggregate numbers

¢ No metric is perfect, so lots of emphasis on standard
benchmarks today

52

