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Introduction to AEP
In information theory, the asymptotic equipartition property (AEP) is the analog
of the law of large numbers. This law states that for independent and identically
distributed (i.i.d.) random variables:
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Similarly, the AEP states that:

Where p(X1,X2,…Xn) is the probability of observing the sequence X1,X2,…Xn. 
Thus, the probability assigned to an observed sequence will be close to 2-nH (from
the definition of entropy).
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Consequences
We can divide the set of all sequences in to two sets, the typical set, where the 
sample entropy is close to the true entropy, and the non-typical set, which
contains the other sequences. The importance of this subdivision is that any
property that is proven for the typical sequences will then be true with high 
probability and will determine the average behavior of a large sample (i.e. a 
sequence of a large number of random variables).

For example, if we consider a random variable X∈{0,1} having a probability
mass function defined by p(1)=p and p(0)=q, the probability of a sequence
{x1,x2,…xn} is:

For example, the probability of the sequence (1,0,1,1,0,1) is p4q2. Clearly, it is
not true that all 2n sequences of length n have the same probability. In this
example, we can say that the number of 1’s in the sequence is close to np.
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Convergence of Random Variables
Definition: Given a sequence of random variables X1, X2, …Xn, we say that the 
sequence X1, X2, …Xn, converges to a random variable X:

1. In probability if for every ε>0, Pr{|Xn-X|>ε} ->0
2. In mean square if E(Xn-X)2-> 0
3. With probability 1 (also called almost surely) if Pr{limn->∞Xn=X}=1 

The AEP
Theorem (AEP): If X1, X2,… are i.i.d. ~p(x), then

in probability.

Proof: Functions of independent random variables are also independent random
variables. Thus, since the Xi are i.i.d., so are log p(Xi). Hence by the law of large
numbers: 
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Typical Set
Definition: The typical set Aε

(n) with respect to p(x) is the set of sequences (x1, 
x2, …xn)∈χn with the following property:

As a consequence of the AEP, we can show that the set Aε
(n) has the following

properties:

Theorem:
1. If (x1,x2,…xn)∈ Aε

(n) , then H(X)-ε ≤ -1/n log p(x1,x2,…xn) ≤ H(X)+ε
2. Pr{Aε

(n) }>1-ε for n sufficiently large
3. | Aε

(n) | ≤ 2n(H(X)+ε), where |A| denotes the number of elements in the set A
4. | Aε

(n) | ≥ (1- ε)2n(H(X)-ε) for n sufficiently large

Thus, the typical set has probability nearly 1, all elements of the typical set are 
nearly equiprobable, and the number of elements in the typical set is nearly 2nH
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Typical Set
Proof: The proof of property 1 is immediate from the definition of Aε

(n) . The 
second property follows directly from Theorem AEP. In fact, from (1) and 
the definition of convergence in probability, we can say that for any δ > 0, 
there exists an n0 such that for all n ≥ n0, we have:

Setting δ = ε , we obtain the second part of the theorem, since the sequence
that satisfy (1) is by definition a sequence belonging to Aε

(n). Hence, the 
probability of the event (X1,X2, . . . , Xn) ∈ Aε

(n) tends to 1 as n→∞. The 
identification of δ =ε will conveniently simplify notation later. To prove 
property (3), we write:

Where the second inequality follows from the definition of typical set.
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Typical Set
Finally, for n sufficiently large, the second property states that Pr{Aε

(n) }>1-ε, so 
that:

Where the second inequality follows from the definition of typical set. 
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Data Compression
Let X1,X2,…Xn be i.i.d. random variables ~p(x). We wish to find short 
descriptions for such sequences of random variables. We divide all sequences in 
χn into two sets: Aε

(n) and its complement Aε
(n)c.

We order all elements in each set according to some order, then we can represent
each sequence of Aε

(n) by giving the index of the sequence in the set. Since there
are ≤ 2n(H+ε) sequences in Aε

(n) because of property 3, we can use no more than
n(H+ε)+1 bits (the extra bit because it may not be an integer). We prefix all these
sequences by 0, giving a total length of n(H+ε)+2 bits. 

Similarly, we can index each sequence in Aε
(n)c by using not more than n 

log|χ|+1 bits. Prefixing these indices by 1, we have a code for all the sequences
in χn.
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Data Compression
The coding scheme has the following features:

1. The code is one-to-one decodable, using the initial bit to indicate the length of 
the codeword following
2. We have used a brute force enumeration of Aε

(n)c without taking into account 
that the number of elements is less than the number of elements in χn

3. The typical sequences have short description of length ≈ nH.

We will use notation xn to denote the sequence x1, x2, …xn. Let l(xn) be the length
of the codeword corresponding to xn. If n is sufficiently large so that Pr{Aε

(n)} ≥
(1- ε) (property 2), then the expected length of the codeword is:

Data Compression

Where ε’ = ε +εlog|χ|+2/n can be made arbitrarly small. Hence we have
proven the following theorem:
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Average Code-length
Theorem: Let Xn be i.i.d. ~p(x). Let ε>0. Then there exists a code which maps
sequences xn of length n into arbitrary strings such that the mapping is one-to-
one (and therefore invertible) and:

For n sufficiently large.

Thus we can represent sequences Xn using nH(X) bits on the average.
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High Probability Set and Typical Set
From the definition of Aε

(n) it is clear that this is a fairly small set that contains
most of the probability . But from the definition it is not clear whether it is the 
smallest such set. We will prove that the typical set has essentially the same
number of elements as the smallest set, to first order in the exponent.

Definition: For each n=1,2,…, let Bδ
(n)⊂χn be any set with Pr{Bδ

(n)}≥1-δ. We
argue that Bδ

(n) must have significant intersection with Aε
(n) , and therefore must

have about as many elements.

Theorem: Let Xn be i.i.d. ~p(x). For δ<1/2 and any δ’>0, if Pr{Bδ
(n)}≥1-δ, then

1/n log|Bδ
(n)|>H- δ’ for n sufficiently large.

Thus, Bδ
(n) must have at least 2nH elements. But Aε

(n) has 2n(H±ε) elements. 
Therefore Aε

(n) is about the same size of the smallest high probability set.
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Equality to the First Order
Definition: The notation a    b means:

This means that they are equal to the first order exponent.

The above results lead to the following conclusion: If δn ->0 and εn ->0, 
then: |Bδn

(n)|    |Aεn
(n)|    2nH
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Example
To illustrate the difference between the two sets, let us consider a Bernoulli
sequence X1, X2,…Xn with parameter 0.9. A Bernoulli(θ) random variable is a 
binary random variable that takes on the value 1 with probability θ. Typical
sequences in this case are sequences in which the proportion of 1’s is close to θ.

However, this does not include the most likely single sequence, which is the 
sequence of all 1’s. The set Bδn

(n) includes all the most probable sequences, and 
hence it includes also this sequence. The theorem implies that both A and B 
contains the sequences that have about 90% of 1’s and the two sets are almost
equal in size.

Note that the sequences belonging to Aε
(n) have probability near to one but they

are not a single sequence. In fact, if we take a single sequence composed by 90% 
of 1’s, this single one it is not the most probable, because there are many of these
sequences with the 1’s in different positions.


