Week 4

1. More examples
2. Nondeterminism, equivalence, simulation (Ch 3)
3. Composition (Ch 4)

$$
\begin{aligned}
\forall x \in \text { InputSignals, } & \forall n \in \text { Nats } o_{0} \\
\text { Delay }_{2}(x)(n) & =0, \quad n=0,1 ; \\
& =x(n-2), \quad n=2,3, \ldots
\end{aligned}
$$

Implement Delay ${ }_{2}$ as state machine
\{0\}/0

We will see later that Delay $_{2} \sim$ Delay $_{1}$. Delay $_{1}$

Nondeterministic state machines
In deterministic machines guards from state state are disjoint

In nondeterministic machines guards may not be disjoint. What does that mean?

Topics/determinism/example

The same input signal can lead to more than one state response and output signal

Set and function model
$N=(S t a t e s$, Inputs, Outputs, possibleUpdates, initialState) possibleUpdates: States \times Inputs $\rightarrow P($ States \times Outputs) where $P($ States \times Outputs) is the set of all non-empty subsets of States \times Outputs

Topics/deterministic/possible updates

Always: possibleUpdate(s,absent) $=\{(s, a b s e n t)\}$

A deterministic machine determines a function
H: InputSignals \rightarrow OutputSignals

A nondeterministic machine determines a relation Behaviors $=\{(x, y) \mid y$ is a possible output signal corresponding to x \}
\subset InputSignals \times OutputSignals

Why non-deterministic machines?

1. Topics/determinism/Abstraction
2. Topics/determinism/Equivalence
3. Topics/determinism/Simulation

The matching game
Two (nondeterministic) machines,
$A=\left(\right.$ States $_{A}$, Inputs, Outputs, possibleUpdates $\left._{A}, S_{A}(0)\right)$
$B=\left(\right.$ States $_{B}$, Inputs, Outputs, possibleUpdates $\left.{ }_{B}, S_{B}(0)\right)$

Suppose input symbol x and
A moves from $S_{A}(0)$ to $S_{A}(1)$ and produces output y
Then for same input symbol x
B can select move from $s_{B}(0)$ to $s_{B}(1)$, to produce y
and continue the game from states $S_{A}(1), S_{B}(1)$
B simulates A if there is a subse \dagger $S \subset$ States $_{A} \times$ States $_{B}$ such that

1. (initialState ${ }_{A}$, initialState ${ }_{B}$) $\in S$, and
2. $\forall\left(s_{A}, s_{B}\right) \in S, \forall x \in$ Inputs, $\forall\left(s_{A}^{\prime}, y\right) \in$ possibleUpdates $_{A}\left(s_{A}, x\right)$
$\exists\left(s_{B}^{\prime}, y\right) \in$ possibleUpdates $_{B}\left(s_{B}, x\right)$ such that

$$
\left(s_{A}^{\prime}, S_{B}^{\prime}\right) \in S
$$

Theorem Suppose B simulates A. Then,
Behaviors $_{A} \subset$ Behaviors $_{B}$
i.e. if y is a possible output response to x by machine A, y is also a possible output response to x by machine B.

Question Suppose B simulates A and C simulates B. Does C simulate A ?

Topics/Composition/Synchrony

1. Each component reacts once for every input symbol
2. The following happens simultaneously for each component
-The input symbol is consumed

- A state update occurs leading to next state and producing current output
-If there is a feedback loop, the output appears at the input port

Topics/Composition/Side-by-side

Fig 4.2, p. 127

Topics/Composition/Cascade

States $(0,1)$ and $(1,0)$ of cascade machine are NOT reachable

Fig 4.4, p 131

Topics/Composition/Series-Parallel

Topics/Composition/Playback

Topics/Composition/Playback

Topics/Composition/Composition

