Ultrasound imaging (ultrasonography)

Outline

Basic principle

- Same idea of radar
- Acoustic properties of tissues

Details

- Ultrasounds generation/detection
- Interaction of ultrasounds with body
- Scanning modes, especially doppler

Clinical applications

- Gynecology and obstetrics
- Cardiology

Basic principle

Same principle of radar

► A probe (*transducer*) sends **sound wave pulses** through body

► At each **boundary between tissues**:

- small fraction of the wave is *reflected back* and *detected* by transducer (*echo*)
- the remaining energy is transmitted past the boundary
- ► Average **speed of sound** in tissue is ≈1540 m/s
 - speed in air is ≈340 m/s
- Depth of each boundary is calculated from the time between transmission and reception
- ► The *stronger* the returning signal, the *brighter* it will be on the image

Basic principle

Notes

- Sound is a pressure wave which is created by a vibrating object
- Ultra-high-frequency sound waves (1-15 MHz) are used (human can hearing between 20 Hz to 20 KHz)
- Different **tissues** have different **properties**:
 - Speed of propagation in it (average is 1540 m/s)
 - Acoustic impedance (Z), i.e. attenuation
 - NB: values are similar but with **big exceptions**, e.g. *air* and *bone*

Phased array

Endocavitary

Various beam shapes for specific purposes

Very fast image acquisition (real time)

Linear

Biplanar

It is <u>NOT</u> an *ionizing radiation*!

Convex

T-type linear

Linear

Micro convex

Diagnostics

200MHz

Therapy

2MHz

Ultrasound

20KHz

Acoustic

(Human Hearing)

Earthquake

Infrasound

20Hz

Microscopy

Clinical applications

Gynecology

- Especially useful during pregnancy to *image the fetus*
- Non-invasive for both mother and fetus

Cardiology

- The rapid acquisition allows real time investigation of *heart morphology and function* e.g. valve structure, ventricular function etc
- Also blood flow can be assessed

Diagnose kidney stones (alternative to CT)

- Cheap and noninvasive alternative to CT to easily spot the presence of kidney stones
- Breathing etc causes problems in other modalities

Ultrasounds generation/detection

Piezoelectricity = "electricity resulting from pressure"

- Ability of certain materials to generate electricity in response to applied mechanical stress/pressure
- Discovered in 1880 by Jacques & Pierre Curie

Piezoelectric transducer: electronic device that...

- ► On application of electric field → deforms and generates a pressure wave
- ► When hit/deformed by a pressure wave → induces an electric field

Piezoelectric transducers found in everyday life

Interaction of ultrasounds with body

Depends on acoustic properties of tissues

- **Boundary** between two tissues: (Z_1, c_1) and (Z_2, c_2)
- ► Relationship between *incidence* (θ_i) , *reflected* (θ_r) and *refracted* (θ_r) *angles* described by **Snell's law**

Reflected and transmitted waves

► Reflection

- $\theta_i = \theta_r$ and speed c_1 is unaltered
- Non-perpendicular echoes are reflected away from the source (thus won't be detected)

Transmission

- Both angle and propagation speed are changed

$$\frac{\sin\theta_i}{\sin\theta_t} = \frac{c_1}{c_2}$$

- This phenomenon is called refraction

Interaction of ultrasounds with body

Reflection coefficient

► The **fraction** of sound intensity that is **reflected**

$R_{I} = \frac{I_{r}}{I_{i}} = \frac{\left(Z_{2}\cos\theta_{i} - Z_{1}\cos\theta_{t}\right)^{2}}{\left(Z_{2}\cos\theta_{i} + Z_{1}\cos\theta_{t}\right)^{2}}$

- Conservation of energy: $R_I + R_T = 1$
- Examples (assuming perpendicular incidence)
 - **Fat-muscle**: $R_I = (1.7-1.38)^2 / (1.7+1.38)^2 = 0.011$ → ≈99% transmitted
 - Muscle-air: $R_I = (1.38-0.00043)^2 / (1.38+0.00043)^2 = 0.999$ → ≈99% reflected
 - **Muscle-bone**: $R_I = (1.38-7.8)^2 / (1.38+7.8)^2 = 0.489 \implies \approx 50\%$ transmitted
 - NOTE₁: anatomy unobservable beyond an air-filled cavity (and bones)
 - NOTE₂: that's why *a gel is used* on the probe (to eliminate air pockets)!

Scattering at small structures

- ► When a wave hits structures with size same/smaller than wavelength → wave is scattered in all directions
- The scattering of multiple objects generates complex constructive/destructive interference (speckle effect)

Scanning modes

A-mode (Amplitude modulation)

- Sends a single pulse and plots the amplitude of the echo as function of time
- Used to calculate lengths (mainly in ophthalmology): distance = (time elapsed * speed of sound) / 2

B-mode (Brightness modulation)

- Most common form of ultrasonography
- 2D images created by steering the transducer
- Brightness of a pixel depends on the amplitude of the echo backscattered from that location

M-mode (Motion mode)

- Repeated A-mode or B-mode measurements
- Used mainly in cardiology

Alessandro Daducci

amplitud€

time

Scanning modes

Doppler mode

► What is the *doppler effect*?

"...It's the **apparent change in the frequency** of a wave caused by relative motion between the source of the wave and the observer..."

► There's no actual frequency change, it's apparent

- When the <u>source moves towards</u> the observer, each successive wave crest is emitted from a *position closer to the observer* than the previous wave
- Each wave takes *slightly less time to reach* the observer than the previous one
- Observer then perceives a higher frequency
- Opposite when source moves away

Doppler effect to measure blood flow

Main image artifacts

Speed displacement

- Variations in sound speed in different tissues can cause misplacement of the anatomy (1540 m/s is only an average speed)
- Some echoes displaced from expected location in the image (discontinuities in borders)

Shadowing and posterior enhancement

- Differences in attenuation cause similar problems
- Hypo-intensities behind structures that strongly absorb or reflect sound waves
- Hyper-intensity areas arise from increased transmission of sound in objects having very low attenuation

Attenuation Low High Through transmission Shadowing Shadowing

NB: artifacts are not necessarily "bad" (e.g. kidney stones identified by artifact)

Summary

Pros

- Noninvasive and not ionizing radiation
- Low cost and high portability
- Excellent temporal resolution (real time)

Cons

- Image quality: noisy and many artifacts
- Low spatial resolution

Applications

- Gynecology and obstetrics (only noninvasive modality to image fetuses)
- Cardiology
- Diagnose kidney stones