
1

Advanced issues
in pipelining

2

Outline

Handling exceptions
Supporting multi-cycle operations
Pipeline evolution
Examples of real pipelines

3

Handling exceptions

4

Exceptions

In pipelined execution, one instructions completes in
N clock cycles
Clock cycle is the minimum granularity for interrupts

So, exceptions can interrupt execution of several instructions!

We must include capabilities to “cancel” an
instruction while executing!
Source of interrupts:

Power failure
Arithmetic overflow
I/O device request
OS call
Page fault
…

5

Exception source in pipeline

Each stage has its sources:
IF

• Page fault on instruction fetch
• Misaligned memory access
• Memory-protection violation

ID
• Undefined or illegal opcode

EX
• Arithmetic interrupt

MEM
• Page fault on data fetch
• Misaligned memory access
• Memory-protection violation

6

Exception handling

Complications:
Simultaneous exceptions in more than one pipeline
stage, e.g.,

• Load with data page fault in MEM stage
• Add with instruction page fault in IF stage
• Add fault will happen BEFORE load fault

In MIPS, exceptions tend to occur in the EX or
MEM stage (e.g., late in the pipe)
Requirements:

Pipeline must be safely shut down
PC must be saved so restart point is known

• If restart is a branch then it will need to be re-executed
• Which means the condition “code” state must not change

7

Exception handling (2)

MIPS/DLX sequence:
When an exception occurs, the pipeline control does:

1. Force trap instruction into pipeline on next IF
2. “Squash ” all instructions that follow

(0’s to pipeline registers)
Prevent not-completed instructions from changing state!

3. Let all preceding instructions complete if they can
4. Save the restart PC value

If delayed branches are used, save BDS+1 PCs

5. OS handle the exception
(saves PC of faulting instructions for later restart)

8

Precise exceptions (1)

Definition:
Exceptions are called precise if they leave the
machine in a state that is consistent with the
sequential execution model
Otherwise they are called imprecise (or non-precise)

Example:
A precedes B
B finishes before A and modifies state imprecise

9

Precise exceptions (2)

Condition for preciseness:
1. All instructions before the faulting instruction have

completed (and modified machine state)
2. All instructions after the faulting instruction have not

completed (nor modified machine state)
3. The faulting instruction may or may not complete, but

is either completed or it has to be started
Precise exceptions are not always possible

e.g., FP operations
Most machines have two operation modes:

Precise exceptions (slow, less overlapping)
Non-precise exception (fast)

10

Handling exceptions: example

WBEX

MEM

WB

WBMEMEXIDIFI+3

WBEXIDIFI+5

MEMEXIDIFI+4

I+6

I+2

I+1

I

MEMIDIF

WBMEMEXIDIF

WBMEMEXIDIF

WBMEMEXIDIF

<- Page fault
<- Squash

<- Squash
<- Squash

Interrupt
handler

11

Handling exceptions: example (2)

12

Handling exceptions: example (2)

ldq or addq xor and

13

Handling exceptions: example (2)
stq bubble(nop) bubble(nop) bubble(nop) xor

14

Further complications in pipelines

Complex Addressing Modes and Instructions
Address modes:

• Autoincrement causes register change during instruction
execution

• Interrupts? Need to restore register state
• Adds WAR and WAW hazards since writes are no longer the last

stage.

Memory-Memory Move Instructions
• Must be able to handle multiple page faults
• Long-lived instructions: partial state save on interrupt

Condition Codes
• Ex., PSW bits

15

Multi-cycle operations

16

Multi-cycle Operations

It is impractical to require that all operations
complete in one clock cycle
What about FP operations?

Recall that clock cycle is bounded by slowest pipeline
stage
Doing FP ops in one cycle would mean to
use a slow clock

Use a modified pipeline:
The EX cycle is repeated as many times as needed to
complete the operation
There may be multiple floating-point functional units.

17

Multi-cycle Operations (2)

Four separate functional units:
The main integer unit
FP and integer multiplier
FP adder (handles FP add, subtract, and conversion)
FP and integer divider

If we assume that the execution stages of these
functional units are not pipelined

Cycling for
computation

18

Multi-Cycle Operations (3)

Floating point gives long execution time.
It’s possible to pipeline the FP execution unit so it
can initiate new instructions without waiting full
latency.

Can also have multiple FP units.
Typical values:
FP Instruction Latency
Add, Subtract 4
Multiply 8
Divide 36
Square root 112
Negate 2
Absolute value 2
FP compare 3

of stages after EX an
Instruction produces a result

Initiation interval = time between two successive ops (= latency-1)

19

Multi-Cycle Operations (4)

To reduce initiation interval, some “long”
operations are pipelined

Some may not be pipelined
• e.g, sometimes division not pipelined

Implementation:

20

Multi-Cycle Operations (5)

Example (independent operations):

WBMEMEXIDIFSD

WBMEMEXIDIFLD

WBMEMA4A3A2A1IDIFADDD

WBMEMM7M6M5M4M3M2M1IDIFMULTD

21

Multi-Cycle Operations: problems

Longer latencies increase the chance of
RAW hazards

Ex: instruction needing result of an FP ADD must
wait 4 cycles

Non-pipelined operations increase the chance of
structural hazards
WAW are now possible (but no WAR)

Instructions do not reach WB in order
Instruction complete in different order than issued

Problems with exceptions
Different latencies may require multiple write to
registers

22

Multi-Cycle Operations: problems

Example: RAW stalls

Example: multiple writes to register

MEM

MEM

stall

A4

stall

A3

stall

stall

M7

stall

A1

MEM

stallstallstall stallstallstallstallIFSD F2,0(R2)

A2stallstallstallstall stallstallIDIFADDD F2,F0,F8

WBM6M5M4M3M2M1stallIDIFMULTD F0,F4,F,6

WBMEMEXIDIFLD F4,0(R2)

WBMEMEXIDIF…

WBMEMEXIDIF…

WBMEMEXIDIF…

WBMEMEXIDIF…

MEM

MEM

MEM

WB

WB

WB

EXIDIFLD F8, 0(R2)

A4A3A2A1IDIFADDD F2, F2, F6

M7M6M5M4M3M2M1 IDIFMULTD F0,F4,F,6

23

Multi-Cycle Operations

Performance impact:
Average # of stalls for operation type

0

5

10

15

20

25

30

doduc

ea
r

hyd
ro

2d

m
dlij

dp

su
2co

r
add/sub
compare
mult
div

24

Pipeline evolution

25

Outline

Out-of-order execution
Superscalar pipelines
Superpipelines

26

Out-of-order execution

Assumptions so far:
In-order instruction execution:

• If an instruction is stalled in the pipeline, later instructions
cannot proceed

Static scheduling
• The hardware minimizes the impact of hazards
• It is up to the compiler to schedule dependent instructions so

as to avoid hazards
• Static = No exploitation of run-time scheduling opportunities

Improvements:
Out-of-order (OOO) execution
Dynamic scheduling

• Done by the hardware!

27

OOO execution

In traditional pipelines, a hazards also stalls
instructions that are not affected by it

Example
DIVD $0, $2, $4
ADDD $10, $0, $8
SUBD $12, $8, $4

The SUB is independent of the rest, yet it is stopped
(for several cycles)

• Particularly critical for multi-cycle instructions
Why not let SUB complete?

• Need extra hardware to do this
• Need to separate:

• Hazard detection phase
• Instruction issue phase

28

OOO execution (2)

Hazard detection and instruction issue done
in the ID stage

Split ID conceptually into two stages:
• Issue

• Decode instructions and check for hazards

• Read operands
• Wait until no data hazards, then read operands

ID

Issue Read
ops

IF/ID ID/EX

29

OOO execution (3)

Definitions:
Three phases of instruction processing:
1. Instruction issue (or dispatch)
2. Instruction execution:

• There will be multiple instructions in execution at the same
time
(thanks to availability of several independent functional units)

3. Instruction commit (or completion)
• When results are written

Typically:
• Issue: in-order
• Execution: out-of-order
• Commit: may be either one

30

Dynamic scheduling

OOO execution = instruction issue is still in order!
WAR hazards now possible!

• Example:
DIVD $0, $2, $4
ADDD $10, $0, $8
SUBD $8, $8, $4

If SUBD is executed first,
it will write a new $8 before

it is read by ADDD

31

OOO execution: organization

Result bus

Reservation station (a.k.a. issue queues)
Buffers where instructions wait for the desired unit
Realize the “issue” phase

32

OOO execution: organization (2)

Traditional MEM stage has disappeared
MEM accesses managed by a proper LOAD/STORE unit

EX stage consists of multiple units with different
latencies
There is a single result bus for transferring
results of the various units to register file

33

OOO execution schemes

Three solutions:
Commit-in-order:

• Instructions are committed according to the architectural order

Reorder buffer:
• Instructions are committed out of order, but they are forced to

modify the machine state according to the architectural order

History buffer:
• Instructions are committed out of order, and machine state is

modified in any order, but it is always possible to restore a
consistent state in case of hazards

34

OOO execution: architecture

Single result bus requires a bus reservation
scheme

Implemented through the Result Shift Register (RSR)
• Position j of RSR is reserved when instruction I (taking j cycles

for EX) is issued
• If taken by an earlier instruction, I is kept waiting in reservation

stations for 1 cycle (after that, retry)
• Contents of RSR shifted at each cycle

unit1

unit2

unitN

RSR

RF

35

RSR structure

Information contained in the RSR:
Identifier of unit to be used
Destination register
Validity bit (actual reservation or not)
PC (for state restoration)

Example:
100 multd f12,f8,f10 (10 cycles)
104 addd f18,f14,f16 (2 cycles)

…

11

10

…

2

1

1001F12Mult

1041F18Add

PCVRdUnit

36

Commit-in-order

RSR is reserved so that commit is in the same
order as the program
Implementation

Instruction I when reserving RSR slot j also reserves
slots 0,…,j-1 that are not yet reserved

• Done by using some bits in an RSR entry

37

Reorder buffer (1)

Results are fed to the
Reorder buffer (ROB)

ROB works as a circular queue
• Head = instruction that when

completed will modify
first the state

• Tail = where issued
instructions are inserted

• Entries contain:
• Destination register
• Instruction result
• Commit bit (instruction is

committed)
• PC

RSR now contains a pointer to
position in ROB

unit1

unit2

unitN

RSR

ROB RF

38

Reorder buffer (2)

Completed instructions will leave RSR but not ROB
Instructions leave ROB in order!

• Entries that leave RSR write result in ROB entry!

Example:
100 multd f12,f8,f10 (10 cycles)
104 addd f18,f14,f16 (2 cycles)

n

2

3

pROB

…

10

…

2

1

1001F12Mult

1041F18Add

PCVRdUnit

RSR

m

Result

…

…

3

2

1

1040F18

1000F12

PCCRd

ROB

head
tail

m>n

39

History buffer (1)

Improves ROB
Similar to ROB

• Circular queue
• Entries contain:

• Destination register
• Old value of

destination register
• Commit bit
• PC

RSR contains a pointer
to HB

unit1

unit2

unitN

RSR

RF

HB

40

History buffer (2)

Results are written in RF as soon as available
If there is no need of restoring the previous state,
the (committed) instruction at the top of HB
leaves HB
Note:

Instructions can be issued only if dependencies are
solved; if not, they are queued
Consequence: state must be restored only because of

• Interrupts
• Mispredicted branches

41

P6 architecture

42

P6 Pipeline

43

P6 pipeline

44

Advanced architectures

45

Getting CPI < 1:
Issuing Multiple Instructions/Cycle

Two variants:
Superscalar:

• Varying no. instructions/cycle (1 to 8), scheduled by compiler or
by HW

• IBM PowerPC, Sun UltraSparc, DEC Alpha, HP 8000

Very Long Instruction Words (VLIW):
• Fixed number of instructions (4-16) scheduled by the compiler
• Put operations into wide templates

Instructions Per Clock cycle (IPC) vs. CPI

46

VLIW

Statically scheduled ILP
architecture.

Wide instructions specify many
independent simple operations
Multiple functional units execute
all of the operations in an
instruction concurrently
Instructions directly control the
hardware with minimal decoding

A powerful compiler is
responsible for locating and
extracting ILP from the
program and for scheduling
operations to exploit the
available parallel resources
VLIW Instruction

100 - 1000 bits

47

EPIC

EPIC (Explicitly Parallel Instruction Computing)
An ISA philosophy/approach (IA-64 - Itanium)

Very closely related to but not the same as VLIW
Similarities:

Compiler generated wide instructions
Static detection of dependencies
ILP encoded in the binary (a group)
Large number of architected registers

Differences:
Instructions in a bundle can have dependencies

• Hardware interlock between dependent instructions

Allows dynamic scheduling and functional unit binding
Accommodates varying number of functional units and latencies

48

Superscalar v. VLIW

49

Intel/HP “Explicitly Parallel
Instruction Computer (EPIC)”

3 Instructions in 128 bit “groups”
Field determines if instructions dependent or independent

Smaller code size than old VLIW, larger than x86/RISC
Groups can be linked to show independence > 3 instr

64 integer registers + 64 floating point registers
Not separate files per funcitonal unit as in old VLIW

Hardware checks dependencies
(interlocks => binary compatibility over time)
Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?
IA-64 : name of instruction set architecture; EPIC is type

Merced is name of first implementation (1999/2000?)
LIW = EPIC?

50

Architectural Trends

Simultaneous Multi-Threading (SMT) processors
Thread-level parallelism (TLP) as opposed to
instruction-level one (ILP)

Memory-centric processors (I-RAM)
Vector-processor ISA organized around a large amount
of on-chip memory (not only caches)

Super-speculative processors
Superscalar architectures bringing speculation and OOO
to the extreme

Trace processors
Execute pre-fetched sequences of instructions viewed
as a trace

51

Examples of real pipelines

52

UltraSPARC pipeline

53

Alpha pipeline

54

PentiumPro pipeline

55

Summary

Interrupts, Instruction Set, FP makes pipelining
harder
Hardware can improve that

