

Chapter 4: ThreadsChapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 4: ThreadsChapter 4: Threads

 Overview

 Multithreading Models

 Threading Issues

 Pthreads

 Windows XP Threads

 Linux Threads

 Java Threads

4.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Single and Multithreaded ProcessesSingle and Multithreaded Processes

4.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BenefitsBenefits

 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

4.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

User ThreadsUser Threads

 Thread management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

4.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Kernel ThreadsKernel Threads

 Supported by the Kernel

 Examples

 Windows XP/2000

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

4.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multithreading ModelsMultithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Many-to-OneMany-to-One

 Many user-level threads mapped to single kernel thread

 Examples:

 Solaris Green Threads

 GNU Portable Threads

4.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Many-to-One ModelMany-to-One Model

4.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

One-to-OneOne-to-One

 Each user-level thread maps to kernel thread

 Examples

 Windows NT/XP/2000

 Linux

 Solaris 9 and later

4.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

One-to-one ModelOne-to-one Model

4.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Many-to-Many ModelMany-to-Many Model

 Allows many user level threads to be mapped to many kernel
threads

 Allows the operating system to create a sufficient number of
kernel threads

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiber package

4.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Many-to-Many ModelMany-to-Many Model

4.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Two-level ModelTwo-level Model

 Similar to M:M, except that it allows a user thread to be
bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

4.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Two-level ModelTwo-level Model

4.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Threading IssuesThreading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation

 Signal handling

 Thread pools

 Thread specific data

 Scheduler activations

4.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semantics of fork() and exec()Semantics of fork() and exec()

 Does fork() duplicate only the calling thread or all threads?

4.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread CancellationThread Cancellation

 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the target
thread immediately

 Deferred cancellation allows the target thread to
periodically check if it should be cancelled

4.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Signal HandlingSignal Handling

 Signals are used in UNIX systems to notify a process that a
particular event has occurred

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

 Options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific threa to receive all signals for the process

4.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread PoolsThread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing
thread than create a new thread

 Allows the number of threads in the application(s) to be
bound to the size of the pool

4.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread Specific DataThread Specific Data

 Allows each thread to have its own copy of data

 Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

4.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Scheduler ActivationsScheduler Activations

 Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads allocated
to the application

 Scheduler activations provide upcalls - a communication
mechanism from the kernel to the thread library

 This communication allows an application to maintain the
correct number kernel threads

4.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

PthreadsPthreads

 A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

 API specifies behavior of the thread library,
implementation is up to development of the library

 Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

4.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XP ThreadsWindows XP Threads

 Implements the one-to-one mapping

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known
as the context of the threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

4.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linux ThreadsLinux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space
of the parent task (process)

4.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Java ThreadsJava Threads

 Java threads are managed by the JVM

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

4.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Java Thread States Java Thread States

End of Chapter 4End of Chapter 4

