
  

Chapter 9:  Virtual MemoryChapter 9:  Virtual Memory



9.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 9:  Virtual MemoryChapter 9:  Virtual Memory

 Background

 Demand Paging

 Process Creation

 Page Replacement

 Allocation of Frames 

 Thrashing

 Demand Segmentation

 Operating System Examples



9.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BackgroundBackground

 Virtual memory – separation of user logical memory from physical 
memory.

 Only part of the program needs to be in memory for execution.

 Logical address space can therefore be much larger than 
physical address space.

 Allows address spaces to be shared by several processes.

 Allows for more efficient process creation.

 Virtual memory can be implemented via:

 Demand paging 

 Demand segmentation



9.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory

⇒



9.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual-address SpaceVirtual-address Space



9.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared Library Using Virtual MemoryShared Library Using Virtual Memory



9.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Demand PagingDemand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed 

 Faster response

 More users

 Page is needed ⇒ reference to it

 invalid reference ⇒ abort

 not-in-memory ⇒ bring to memory



9.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Transfer of a Paged Memory to Contiguous Disk SpaceTransfer of a Paged Memory to Contiguous Disk Space



9.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Valid-Invalid BitValid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

 Initially valid–invalid but is set to 0 on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is 0 ⇒ 
page fault

1
1
1
1
0

0
0



Frame # valid-invalid bit

page table



9.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Table When Some Pages Are Not in Main MemoryPage Table When Some Pages Are Not in Main Memory



9.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page FaultPage Fault

 If there is ever a reference to a page, first reference will trap to 
OS ⇒ page fault

 OS looks at another table to decide:
 Invalid reference ⇒ abort.
 Just not in memory.

 Get empty frame.
 Swap page into frame.
 Reset tables, validation bit = 1.
 Restart instruction:  Least Recently Used 

 block move

 auto increment/decrement location



9.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Steps in Handling a Page FaultSteps in Handling a Page Fault



9.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

What happens if there is no free frame?What happens if there is no free frame?

 Page replacement – find some page in memory, but not 
really in use, swap it out

 algorithm

 performance – want an algorithm which will result in 
minimum number of page faults

 Same page may be brought into memory several times



9.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Performance of Demand PagingPerformance of Demand Paging

 Page Fault Rate 0 ≤ p ≤ 1.0

 if p = 0 no page faults 

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ [swap page out ]

+ swap page in

+ restart overhead)



9.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Demand Paging ExampleDemand Paging Example

 Memory access time = 1 microsecond

 50% of the time the page that is being replaced has been modified 
and therefore needs to be swapped out

 Swap Page Time = 10 msec = 10,000 msec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P      (in msec)



9.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process CreationProcess Creation

 Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)



9.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Copy-on-WriteCopy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to 
initially share the same pages in memory

If either process modifies a shared page, only then is the page 
copied

 COW allows more efficient process creation as only modified pages 
are copied

 Free pages are allocated from a pool of zeroed-out pages



9.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page ReplacementPage Replacement

 Prevent over-allocation of memory by modifying page-fault service 
routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only 
modified pages are written to disk

 Page replacement completes separation between logical memory 
and physical memory – large virtual memory can be provided on a 
smaller physical memory



9.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Need For Page ReplacementNeed For Page Replacement



9.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic Page ReplacementBasic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement 

algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update the 
page and frame tables.

4. Restart the process



9.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page ReplacementPage Replacement



9.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Replacement AlgorithmsPage Replacement Algorithms

 Want lowest page-fault rate

 Evaluate algorithm by running it on a particular string of 
memory references (reference string) and computing the 
number of page faults on that string

 In all our examples, the reference string is 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5



9.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Graph of Page Faults Versus The Number of FramesGraph of Page Faults Versus The Number of Frames



9.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 FIFO Replacement – Belady’s Anomaly

 more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3



9.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FIFO Page ReplacementFIFO Page Replacement



9.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FIFO Illustrating Belady’s AnomalyFIFO Illustrating Belady’s Anomaly



9.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Optimal AlgorithmOptimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5



9.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Optimal Page ReplacementOptimal Page Replacement



9.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm

 Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time page is referenced 
through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to 
determine which are to change

1

2

3

5

4

4 3

5



9.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

LRU Page ReplacementLRU Page Replacement



9.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

LRU Algorithm (Cont.)LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in a double 
link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement



9.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Use Of A Stack to Record The Most Recent Page ReferencesUse Of A Stack to Record The Most Recent Page References



9.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

LRU Approximation AlgorithmsLRU Approximation Algorithms

 Reference bit
 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists).  We do not know the 

order, however.

 Second chance
 Need reference bit
 Clock replacement
 If page to be replaced (in clock order) has reference bit = 1 

then:
 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same rules



9.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Second-Chance (clock) Page-Replacement AlgorithmSecond-Chance (clock) Page-Replacement Algorithm



9.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Counting AlgorithmsCounting Algorithms

 Keep a counter of the number of references that have been 
made to each page

 LFU Algorithm:  replaces page with smallest count

 MFU Algorithm: based on the argument that the page with 
the smallest count was probably just brought in and has yet to 
be used



9.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Allocation of FramesAllocation of Frames

 Each process needs minimum number of pages

 Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation



9.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Fixed AllocationFixed Allocation

 Equal allocation – For example, if there are 100 frames and 5 
processes, give each process 20 frames.

 Proportional allocation – Allocate according to the size of process
s i= size of process p i
S=∑ s i
m= total number of frames

a i= allocation for pi=
s i
S
×m

m=64
s i=10
s2=127

a1=
10
137

×64≈5

a2=
127
137

×64≈59



9.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Priority AllocationPriority Allocation

 Use a proportional allocation scheme using priorities rather 
than size

 If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with 
lower priority number



9.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Global vs. Local AllocationGlobal vs. Local Allocation

 Global replacement – process selects a replacement 
frame from the set of all frames; one process can take a 
frame from another

 Local replacement – each process selects from only its 
own set of allocated frames



9.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ThrashingThrashing

 If a process does not have “enough” pages, the page-fault rate is 
very high.  This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of 
multiprogramming

 another process added to the system

 Thrashing ≡ a process is busy swapping pages in and out



9.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thrashing (Cont.)Thrashing (Cont.)



9.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Demand Paging and Thrashing Demand Paging and Thrashing 

 Why does demand paging work?
Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?
Σ size of locality > total memory size



9.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Locality In A Memory-Reference PatternLocality In A Memory-Reference Pattern



9.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Working-Set ModelWorking-Set Model

 ∆ ≡ working-set window ≡ a fixed number of page references 
Example:  10,000 instruction

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆ (varies 
in time)

 if ∆ too small will not encompass entire locality

 if ∆ too large will encompass several localities

 if ∆ = ∞ ⇒ will encompass entire program

 D = Σ WSSi ≡ total demand frames 

 if D > m ⇒ Thrashing

 Policy if D > m, then suspend one of the processes



9.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Working-set modelWorking-set model



9.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Keeping Track of the Working SetKeeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example: ∆ = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and sets the values of all 
reference bits to 0

 If one of the bits in memory = 1 ⇒ page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units



9.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page-Fault Frequency SchemePage-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame



9.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory-Mapped FilesMemory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine 
memory access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized portion of 
the file is read from the file system into a physical page. 
Subsequent reads/writes to/from the file are treated as ordinary 
memory accesses.

 Simplifies file access by treating file I/O through memory rather 
than read() write() system calls

 Also allows several processes to map the same file allowing the 
pages in memory to be shared



9.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory Mapped FilesMemory Mapped Files



9.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory-Mapped Files in JavaMemory-Mapped Files in Java

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class MemoryMapReadOnly
{ 

// Assume the page size is 4 KB
public static final int PAGE SIZE = 4096;
public static void main(String args[]) throws IOException { 

RandomAccessFile inFile = new RandomAccessFile(args[0],"r");
FileChannel in = inFile.getChannel();
MappedByteBuffer mappedBuffer =
  in.map(FileChannel.MapMode.READ ONLY, 0, in.size());
long numPages = in.size() / (long)PAGE SIZE;
if (in.size() % PAGE SIZE > 0)

++numPages;



9.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory-Mapped Files in Java (cont)Memory-Mapped Files in Java (cont)

// we will "touch" the first byte of every page

int position = 0;

for (long i = 0; i < numPages; i++) { 

byte item = mappedBuffer.get(position);

position += PAGE SIZE;

}

in.close();

inFile.close();

}

}

 The API for the map() method is as follows:

map(mode, position, size)



9.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues -- PrepagingOther Issues -- Prepaging

 Prepaging 

 To reduce the large number of page faults that occurs at process 
startup

 Prepage all or some of the pages a process will need, before 
they are referenced

 But if prepaged pages are unused, I/O and memory was wasted

 Assume s pages are prepaged and  of the pages is used

 Is cost of s *   save pages faults > or < than the cost of 
prepaging 
s * (1- ) unnecessary pages?  

  near zero ⇒ prepaging loses 



9.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues – Page SizeOther Issues – Page Size

 Page size selection must take into consideration:

 fragmentation

 table size 

 I/O overhead

 locality



9.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues – TLB Reach Other Issues – TLB Reach 

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB. 
Otherwise there is a high degree of page faults.

 Increase the Page Size. This may lead to an increase in 
fragmentation as not all applications require a large page size

 Provide Multiple Page Sizes. This allows applications that 
require larger page sizes the opportunity to use them without 
an increase in fragmentation.



9.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues – Program StructureOther Issues – Program Structure

 Program structure
 Int[128,128] data;
 Each row is stored in one page 
 Program 1 

                       for (j = 0; j <128; j++)
                        for (i = 0; i < 128; i++)
                              data[i,j] = 0;

     128 x 128 = 16,384 page faults 

 Program 2 

                        for (i = 0; i < 128; i++)
                          for (j = 0; j < 128; j++)
                                data[i,j] = 0;

128 page faults



9.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues – I/O interlockOther Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into 
memory

 Consider I/O. Pages that are used for copying a file from 
a device must be locked from being selected for eviction 
by a page replacement algorithm.



9.57 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory



9.58 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System ExamplesOperating System Examples

 Windows XP

 Solaris 



9.59 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XPWindows XP

 Uses demand paging with clustering. Clustering brings in pages 
surrounding the faulting page.

 Processes are assigned working set minimum and working set 
maximum

 Working set minimum is the minimum number of pages the process 
is guaranteed to have in memory

 A process may be assigned as many pages up to its working set 
maximum

 When the amount of free memory in the system falls below a 
threshold, automatic working set trimming is performed to 
restore the amount of free memory

 Working set trimming removes pages from processes that have 
pages in excess of their working set minimum



9.60 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris Solaris 

 Maintains a list of free pages to assign faulting processes

 Lotsfree – threshold parameter (amount of free memory) to begin 
paging

 Desfree – threshold parameter to increasing paging

 Minfree – threshold parameter to being swapping

 Paging is performed by pageout process

 Pageout scans pages using modified clock algorithm

 Scanrate is the rate at which pages are scanned. This ranges from 
slowscan to fastscan

 Pageout is called more frequently depending upon the amount of 
free memory available



9.61 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris 2 Page ScannerSolaris 2 Page Scanner



  

End of Chapter 9End of Chapter 9


