Chapter 8: Memory Management
GIFBBIIGIBBIII BB I IIBB I

Chapter 8: Memory Management

Background
Swapping

Contiguous Allocation
Paging

Segmentation

Segmentation with Paging

D) ? 1,‘,,, % 4
Operating System Concepts 8.2 Silberschatz, Galvin and Gagne ©2005

Background

B Program must be brought into memory and placed within a process
for it to be run

B |nput queue — collection of processes on the disk that are waiting
to be brought into memory to run the program

B User programs go through several steps before being run

o | ,; (

Operating System Concepts 8.3 Silberschatz, Galvin and Gagne ©2005

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can
happen at three different stages

B Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting location
changes

B | oad time: Must generate relocatable code if memory location
Is not known at compile time

B Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment to
another. Need hardware support for address maps (e.g., base
and limit registers).

Ve v "
Operating System Concepts 8.4 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

other
object
modules

system
library

dynamicall
loaded
system
library
dynamic
linking

source
program
compiler or compile
assembler time
object
module
linkage
editor
load , load
module time
loader
Y -
U (U020 executio
binary - time (run
ALl time)
image
S
8.5

Multistep Processing of a User Program

Silberschatz, Galvin and\ Gagne 05

Logical vs. Physical Address Space

B The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management

® Logical address — generated by the CPU; also referred to as
virtual address

® Physical address — address seen by the memory unit

B | ogical and physical addresses are the same in compile-time and
load-time address-binding schemes; logical (virtual) and physical
addresses differ in execution-time address-binding scheme

Operating System Concepts 8.6 Silberschatz, Galvin and Gagne ©2005

Memory-Management Unit (Mmu)

B Hardware device that maps virtual to physical address

B |n MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent to
memory

B The user program deals with logical addresses; it never sees the
real physical addresses

o | ,; (

Operating System Concepts 8.7 Silberschatz, Galvin and Gagne ©2005

Dynamic relocation using a relocation register

Operating System Concepts

relocation
register
14000
logical physical
address address
CPU o > memory
346 14346
MMU
8.8 Silberschatz, Galvin and\ GagneO

Dynamic Loading

B Routine is not loaded until it is called
B Better memory-space utilization; unused routine is never loaded

B Useful when large amounts of code are needed to handle
iInfrequently occurring cases

B No special support from the operating system is required
implemented through program design

R b
Operating System Concepts 8.9 Silberschatz, Galvin and Gagne ©2005

Dynamic Linking

B Linking postponed until execution time

B Small piece of code, stub, used to locate the appropriate
memory-resident library routine

B Stub replaces itself with the address of the routine, and
executes the routine

B Operating system needed to check if routine is in processes’
memory address

B Dynamic linking is particularly useful for libraries

— :,* ‘ .‘
Operating System Concepts 8.10 Silberschatz, Galvin and Gagne ©2005

Swapping

A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution

Backing store — fast disk large enough to accommodate copies of
all memory images for all users; must provide direct access to
these memory images

Roll out, roll in — swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed

Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows)

Operating System Concepts 8.11 Silberschatz, Galvin and Gagne ©2005

Schematic View of Swapping

operating
system
process P,
@ swap out
, process P,
@ swap in
-]
|
user
R backing store
main memory

Operating System Concepts 8.12 Silberschatz, Galvin and Gagne ©2005

Contiguous Allocation

B Main memory usually into two partitions:

® Resident operating system, usually held in low memory with
interrupt vector

® User processes then held in high memory

B Single-partition allocation

® Relocation-register scheme used to protect user processes
from each other, and from changing operating-system code and
data

® Relocation register contains value of smallest physical address;
limit register contains range of logical addresses — each logical
address must be less than the limit register

Operating System Concepts 8.13

>, A base and a limit register define a logical address space

0
operating
system
25600
process
30004 30004
process base
42094 12090
limit
process
88000
102400

Operating System Concepts 8.14 Silberschatz, Galvin and Gagne 2065

HW address protection with base and limit registers

base + limit

address yes yes

CPU

v
4
A

no no

trap to operating system
monitor—addressing error memory

Operating System Concepts 8.15 Silberschatz, Galvin and Gagne 20b5

Contiguous Allocation (Cont.)

B Multiple-partition allocation

® Hole — block of available memory; holes of various size are
scattered throughout memory

® When a process arrives, it is allocated memory from a hole
large enough to accommodate it

® Operating system maintains information about:
a) allocated partitions Db) free partitions (hole)

oS oS oS oS
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |—> —> —> process 10
process 2 process 2 process 2 process 2

Operating System Concepts 8.16

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

B First-fit: Allocate the first hole that is big enough

B Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces

the smallest leftover hole.

B Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

—

Operating System Concepts 8.17 Silberschatz, Galvin and Gagne ©2005

Fragmentation

B External Fragmentation — total memory space exists to satisfy a
request, but it is not contiguous

B |nternal Fragmentation — allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used

B Reduce external fragmentation by compaction

® Shuffle memory contents to place all free memory together in
one large block

® Compaction is possible only if relocation is dynamic, and is
done at execution time

® 1/O problem
» Latch job in memory while it is involved in I/O
» Do I/O only into OS buffers

Ve v "
Operating System Concepts 8.18 Silberschatz, Galvin and Gagne ©2005

Paging

B | ogical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

B Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes)

B Divide logical memory into blocks of same size called pages.
B Keep track of all free frames

B To run a program of size n pages, need to find n free frames and
load program

B Set up a page table to translate logical to physical addresses
B [nternal fragmentation

Operating System Concepts 8.19 Silberschatz, Galvin and Gagne ©2005

Address Translation Scheme

B Address generated by CPU is divided into:

® Page number (p) — used as an index into a page table
which contains base address of each page in physical
memory

® Page offset (d) — combined with base address to define
the physical memory address that is sent to the memory
unit

Operating System Concepts 8.20 Silberschatz, Galvin and Gagne ©2005

Address Translation Architecture

7
logical physical -
address address | f0000 ... 0000
v
CPU — p | d f d ——
A

fllid ... 11

p{

f

physical
memory

page table

Operating System Concepts 8.21 Silberschatz, Galvin and Gagne 2005

Paging Example

frame
number
page O 0
0|1
page 1 1 I8 1| page O
2|3
page 2 2
37
page 3 page table 3| page 2
memory
5
6
7| page 3
physical
memory

Operating System Concepts 8.22 Silberschatz, Galvin and Gagne 205

Paging Example

0] a 0
1]b
2|c¢
3|d
4 e 4 i
5| f j
6|9 k
7 | h I
8 | i 8 m
9 & n
10| k o}
1] 1 page table p
12| m 12
13| n
14| o
15| p
logical memory 16
20 | @
b
E
d
24 [
f
g
h
28
physical memory

Operating System Concepts 8.23 Silberschatz, Galvin and Gagne 05

Free Frames

lfree-frame list
14
13
18
20
15

g N
.

page O
page 1
page 2
page 3
new process
-

(a)

13

14

15

16

17

18

19

20

21

free-frame list

15

P N
-

page O
page 1

page 2
page 3

Nnew process
. =

14

13
18
20

WM = O

new-process page table

(b)

13

14

15

16

17

18

19

20

page 1

page O

page 2

page 3

Operating System Concepts

8.24

Implementation of Page Table

B Page table is kept in main memory
B Page-table base register (PTBR) points to the page table

B Page-table length register (PRLR) indicates size of the page
table

B |n this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

B The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBS)

R o
Operating System Concepts 8.25 Silberschatz, Galvin and Gagne ©2005

Associative Memory

B Associative memory — parallel search

Page #

Frame #

Address translation (A", A7)
® |If A" is in associative register, get frame # out

® Otherwise get frame # from page table in memory

Operating System Concepts

8.26

Paging Hardware With TLB

logical

address
CPU _>|) d—|

page frame
number number

E TLB hit ohysical

> address
) 4 ¥
E [Ta—
F

TLB

TLB miss

Y

B physical
memory

page table

Operating System Concepts 8.27 Silberschatz, Galvin and Gagne 205

Effective Access Time

B Associative Lookup = € time unit
B Assume memory cycle time is 1 microsecond

B Hit ratio — percentage of times that a page number is found
In the associative registers; ration related to number of
associative registers

B Hit ratio = o
B Effective Access Time (EAT)
EAT=(Q1+ga+(2+¢)(l-a)
=2+¢e-0 |

fm 2 ; S V‘ ‘ »
Operating System Concepts 8.28 Silberschatz, Galvin and Gagne ©2005

Memory Protection

B Memory protection implemented by associating protection bit
with each frame

B Valid-invalid bit attached to each entry in the page table:

® “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

® “invalid” indicates that the page is not in the process’
logical address space

R b
Operating System Concepts 8.29 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

frame number \ |/valid—in\falid bit

\
\
Vv
\

\

\
I
I

~N OO ke W= O

0
page table

8.30

Valid (v) or Invalid (i) Bit In A Page Table

Silberschatz, Galvin and Gagne 205

Page Table Structure

B Hierarchical Paging

B Hashed Page Tables

B |nverted Page Tables

Operating System Concepts 8.31

Hierarchical Page Tables

B Break up the logical address space into multiple page tables

B A simple technique is a two-level page table

vt "
Operating System Concepts 8.32 Silberschatz, Galvin and Gagne ©2005

Two-Level Paging Example

B A logical address (on 32-bit machine with 4K page size) is divided into:
® a page number consisting of 20 bits
® a page offset consisting of 12 bits

B Since the page table is paged, the page number is further divided into:
® a 10-bit page number
® a 10-bit page offset

B Thus, a logical address is as follows:

page number page offset
P P- d
10 10 12

where p. is an index into the outer page table, and p, is the displacement
within the page of the outer page table

R o "
Operating System Concepts 8.33 Silberschatz, Galvin and Gagne ©2005

Two-Level Page-Table Scheme

.

-~ -
/ : 100 =
500 N
™ 100 d 03
= : -
708 """--\. .
: 708
outer page \---, 029 .
table I 900
Fo0
page of 929
page table
page table .
memory

Operating System Concepts 8.34 Silberschatz, Galvin and Gagne 205

Address-Translation Scheme

B Address-translation scheme for a two-level 32-bit paging
architecture

logical address
Pi | P2 | d

P

: g

f 'Y

P2

outer page d
table

! Y

page of
page table

Operating System Concepts 8.35 Silberschatz, Galvin and Gagne 205

Hashed Page Tables

B Common in address spaces > 32 bits

B The virtual page number is hashed into a page table. This page
table contains a chain of elements hashing to the same location.

B Virtual page numbers are compared in this chain searching for a
match. If a match is found, the corresponding physical frame is
extracted.

R o
Operating System Concepts 8.36 Silberschatz, Galvin and Gagne ©2005

Hashed Page Table

physical
logical address | vL address
P d r d >
[3
Y
hash physical
@_' — | s] |‘]|p|r|_T"° memory
hash table

Operating System Concepts 8.37 Silberschatz, Galvin and Gagne 2065

Inverted Page Table

B One entry for each real page of memory

B Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

B Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

B Use hash table to limit the search to one — or at most a
few — page-table entries

Ve v "
Operating System Concepts 8.38 Silberschatz, Galvin and Gagne ©2005

Inverted Page Table Architecture

logical hvsical
address J' physica
address ohysical
CPU »ped p | d L d > memory
searchl }i
pid | p
page table

Operating System Concepts 8.39

Shared Pages

B Shared code

® One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

® Shared code must appear in same location in the logical
address space of all processes

B Private code and data
® Each process keeps a separate copy of the code and data

® The pages for the private code and data can appear
anywhere in the logical address space

R o
Operating System Concepts 8.40 Silberschatz, Galvin and Gagne ©2005

Shared Pages Example

ed 1 0
3
ed 2 4 1
ed 3 £ 2
1
data 1 page table 3
for P1 ed 1
process P, 3 4 ed 2
ed?2
4 5
ed3 6
7 6| ed3
data 2 page table
for P2 7 data 2
e process P,
3 8
ed?2 0
9
ed 3 o
= 10
data 3 page table
for P,
process P,

Operating System Concepts 8.41 Silberschatz, Galvin and Gagne 20b5

Segmentation

B Memory-management scheme that supports user view of memory

B A program is a collection of segments. A segment is a logical unit
such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,
common block,

stack,

symbol table, arrays

Operating System Concepts 8.42 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

User’s View of a Program

subroutine

symbol

table

Sqrt

main
program

logical address

8.43

Silberschatz, Galvin and\ Gagne 2065

Logical View of Segmentation

user space physical memory space

) " < s

Operating System Concepts 8.44 Silberschatz, Galvin and Gagne ©2005

Segmentation Architecture

B | ogical address consists of a two tuple:
<segment-number, offset>,

B Segment table — maps two-dimensional physical addresses;
each table entry has:

® base — contains the starting physical address where the
segments reside in memory

® |imit — specifies the length of the segment

B Segment-table base register (STBR) points to the segment
table’s location in memory

B Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

Operating System Concepts 8.45 Silberschatz, Galvin and Gagne ©2005

Segmentation Architecture (Cont.)

B Relocation.
® dynamic
® by segment table

B Sharing.
® shared segments
® same segment number

B Allocation.
® first fit/best fit

® external fragmentation

N 'l
Operating System Concepts 8.46 Silberschatz, Galvin and Gagne ©2005

Segmentation Architecture (Cont.)

B Protection. With each entry in segment table associate:
® validation bit = 0 O illegal segment
® read/write/execute privileges

B Protection bits associated with segments; code sharing
occurs at segment level

B Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

B A segmentation example is shown in the following diagram

. &
R il

Operating System Concepts 8.47 Silberschatz, Galvin and Gagne ©2005

Address Translation Architecture

limit [base
segment
table
CPU [S d
es
_ Yy
no
Y
trap: addressing error physical memory

Operating System Concepts 8.48 Silberschatz, Galvin and Gagne 2005

Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
411000 | 4700

segment table 4300

segment 1 segment 2

segment 2
4700

logical address space segment 4

5700

6300

segment 1

8700
physical memory

Operating System Concepts 8.49 Silberschatz, Galvin and Gagne ©205

Sharing of Segments

editor
segment 0
43062
data 1 limit | base
0] 25286 | 43062 di
segment 1 1| 4425 | 68348 editor
segment table
‘ process P
logical memory ! 68348 p=
process P, 79773
90003
editor data s
98553
segment 0
limit | base ‘
data 2 0| 25286 | 43062 physical memory
segment 1 1| 8850 | 90003
segment table
‘ process P,
logical memory
process P,

Operating System Concepts 8.50 Silberschatz, Galvin and Gagne 205

Segmentation with Paging — MULTICS

B The MULTICS system solved problems of external
fragmentation and lengthy search times by paging the
segments

B Solution differs from pure segmentation in that the
segment-table entry contains not the base address of
the segment, but rather the base address of a page
table for this segment

Operating System Concepts 8.51 Silberschatz, Galvin and Gagne ©2005

MULTICS Address Translation Scheme

rlogical address

L yes

segment | page-—table
length base no |:d:|

i
segment table trap I_p _|d'

STBR

memory

_>®_pf—>|f|gir'|—>

physical
address

page table for
segment s

Operating System Concepts 8.52

Segmentation with Paging — Intel 386

B As shown in the following diagram, the Intel 386 uses
segmentation with paging for memory management with a
two-level paging scheme

) " b y

Operating System Concepts 8.53 Silberschatz, Galvin and Gagne ©2005

Intel 30386 Address Translation

logical address selector offset

descriptor table

segment descriptor —@4—

k4
linear address ‘ directory‘ page ‘ offset ‘ page frame

physical address

Y

page directory page table

page table entry

Y

directory entry

page directory
base register

Operating System Concepts 8.54 Silberschatz, Galvin and Gagne ©2"05

Linux on Intel 80x86

B Uses minimal segmentation to keep memory management
iImplementation more portable

B Uses 6 segments:
® Kernel code
® Kernel data

® User code (shared by all user processes, using logical
addresses)

® User data (likewise shared)
® Task-state (per-process hardware context)
® LDT
B Uses 2 protection levels:
® Kernel mode
® User mode

o | ,; (

Operating System Concepts 8.55 Silberschatz, Galvin and Gagne ©2005

End of Chapter 8
QIBBBIIGIIBDIICIIBD DI IIBDIIG

