

Module A: FreeBSD SystemModule A: FreeBSD System

A.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Module A: The FreeBSD SystemModule A: The FreeBSD System

 History

 Design Principles

 Programmer Interface

 User Interface

 Process Management

 Memory Management

 File System

 I/O System

 Interprocess Communication

A.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

HistoryHistory

 First developed in 1969 by Ken Thompson and Dennis Ritchie of the
Research Group at Bell Laboratories; incorporated features of other
operating systems, especially MULTICS.

 The third version was written in C, which was developed at Bell Labs
specifically to support UNIX.

 The most influential of the non-Bell Labs and non-AT&T UNIX
development groups — University of California at Berkeley (Berkeley
Software Distributions).
 4BSD UNIX resulted from DARPA funding to develop a standard

UNIX system for government use.
 Developed for the VAX, 4.3BSD is one of the most influential

versions, and has been ported to many other platforms.
 Several standardization projects seek to consolidate the variant

flavors of UNIX leading to one programming interface to UNIX.

A.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

History of UNIX VersionsHistory of UNIX Versions

A.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Early Advantages of UNIXEarly Advantages of UNIX

 Written in a high-level language.

 Distributed in source form.

 Provided powerful operating-system primitives on an inexpensive
platform.

 Small size, modular, clean design.

A.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

UNIX Design PrinciplesUNIX Design Principles

 Designed to be a time-sharing system.

 Has a simple standard user interface (shell) that can be replaced.

 File system with multilevel tree-structured directories.

 Files are supported by the kernel as unstructured sequences of
bytes.

 Supports multiple processes; a process can easily create new
processes.

 High priority given to making system interactive, and providing
facilities for program development.

A.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Programmer InterfaceProgrammer Interface

 Kernel: everything below the system-call interface and above
the physical hardware.

 Provides file system, CPU scheduling, memory
management, and other OS functions through system calls.

 Systems programs: use the kernel-supported system calls to
provide useful functions, such as compilation and file
manipulation.

Like most computer systems, UNIX consists of two separable parts:

A.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

4.4BSD Layer Structure4.4BSD Layer Structure

A.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System CallsSystem Calls

 System calls define the programmer interface to UNIX

 The set of systems programs commonly available defines the user
interface.

 The programmer and user interface define the context that the
kernel must support.

 Roughly three categories of system calls in UNIX.

 File manipulation (same system calls also support device
manipulation)

 Process control

 Information manipulation.

A.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File ManipulationFile Manipulation

 A file is a sequence of bytes; the kernel does not impose a
structure on files.

 Files are organized in tree-structured directories.

 Directories are files that contain information on how to find other
files.

 Path name: identifies a file by specifying a path through the
directory structure to the file.

 Absolute path names start at root of file system

 Relative path names start at the current directory

 System calls for basic file manipulation: create, open, read, write,
close, unlink, trunc.

A.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Typical UNIX Directory StructureTypical UNIX Directory Structure

A.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process ControlProcess Control

 A process is a program in execution.
 Processes are identified by their process identifier, an integer.
 Process control system calls

 fork creates a new process
 execve is used after a fork to replace on of the two processes’s

virtual memory space with a new program
 exit terminates a process
 A parent may wait for a child process to terminate; wait provides

the process id of a terminated child so that the parent can tell
which child terminated.

 wait3 allows the parent to collect performance statistics about the
child

 A zombie process results when the parent of a defunct child process
exits before the terminated child.

A.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Illustration of Process Control CallsIllustration of Process Control Calls

A.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Control (Cont.)Process Control (Cont.)

 Processes communicate via pipes; queues of bytes between two
processes that are accessed by a file descriptor.

 All user processes are descendants of one original process, init.

 init forks a getty process: initializes terminal line parameters and
passes the user’s login name to login.

 login sets the numeric user identifier of the process to that of
the user

 executes a shell which forks subprocesses for user commands.

A.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Control (Cont.)Process Control (Cont.)

 setuid bit sets the effective user identifier of the process to the
user identifier of the owner of the file, and leaves the real user
identifier as it was.

 setuid scheme allows certain processes to have more than
ordinary privileges while still being executable by ordinary users.

A.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SignalsSignals

 Facility for handling exceptional conditions similar to software
interrupts.

 The interrupt signal, SIGINT, is used to stop a command before
that command completes (usually produced by ^C).

 Signal use has expanded beyond dealing with exceptional events.

 Start and stop subprocesses on demand

 SIGWINCH informs a process that the window in which output
is being displayed has changed size.

 Deliver urgent data from network connections.

A.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process GroupsProcess Groups

 Set of related processes that cooperate to accomplish a common
task.

 Only one process group may use a terminal device for I/O at any
time.

 The foreground job has the attention of the user on the
terminal.

 Background jobs – nonattached jobs that perform their function
without user interaction.

 Access to the terminal is controlled by process group signals.

A.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Groups (Cont.)Process Groups (Cont.)

 Each job inherits a controlling terminal from its parent.

 If the process group of the controlling terminal matches the
group of a process, that process is in the foreground.

 SIGTTIN or SIGTTOU freezes a background process that
attempts to perform I/O; if the user foregrounds that process,
SIGCONT indicates that the process can now perform I/O.

 SIGSTOP freezes a foreground process.

A.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Information ManipulationInformation Manipulation

 System calls to set and return an interval timer:
getitmer/setitmer.

 Calls to set and return the current time:
gettimeofday/settimeofday.

 Processes can ask for

 their process identifier: getpid
 their group identifier: getgid
 the name of the machine on which they are executing:

gethostname

A.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Library RoutinesLibrary Routines

 The system-call interface to UNIX is supported and augmented by
a large collection of library routines

 Header files provide the definition of complex data structures used
in system calls.

 Additional library support is provided for mathematical functions,
network access, data conversion, etc.

A.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

User InterfaceUser Interface

 Programmers and users mainly deal with already existing systems
programs: the needed system calls are embedded within the
program and do not need to be obvious to the user.

 The most common systems programs are file or directory oriented.

 Directory: mkdir, rmdir, cd, pwd

 File: ls, cp, mv, rm

 Other programs relate to editors (e.g., emacs, vi) text formatters
(e.g., troff, TEX), and other activities.

A.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shells and CommandsShells and Commands

 Shell – the user process which executes programs (also called
command interpreter).

 Called a shell, because it surrounds the kernel.

 The shell indicates its readiness to accept another command by
typing a prompt, and the user types a command on a single line.

 A typical command is an executable binary object file.

 The shell travels through the search path to find the command file,
which is then loaded and executed.

 The directories /bin and /usr/bin are almost always in the search
path.

A.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shells and Commands (Cont.)Shells and Commands (Cont.)

 Typical search path on a BSD system:

(./home/prof/avi/bin /usr/local/bin /usr/ucb/bin/usr/bin)

 The shell usually suspends its own execution until the command
completes.

A.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Standard I/OStandard I/O

 Most processes expect three file descriptors to be open when they
start:

 standard input – program can read what the user types

 standard output – program can send output to user’s screen

 standard error – error output

 Most programs can also accept a file (rather than a terminal) for
standard input and standard output.

 The common shells have a simple syntax for changing what files
are open for the standard I/O streams of a process — I/O
redirection.

A.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Standard I/O RedirectionStandard I/O Redirection

A.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pipelines, Filters, and Shell ScriptsPipelines, Filters, and Shell Scripts

 Can coalesce individual commands via a vertical bar that tells the
shell to pass the previous command’s output as input to the
following command

% ls | pr | lpr

 Filter – a command such as pr that passes its standard input to its
standard output, performing some processing on it.

 Writing a new shell with a different syntax and semantics would
change the user view, but not change the kernel or programmer
interface.

 X Window System is a widely accepted iconic interface for UNIX.

A.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process ManagementProcess Management

 Representation of processes is a major design problem for
operating system.

 UNIX is distinct from other systems in that multiple processes can
be created and manipulated with ease.

 These processes are represented in UNIX by various control
blocks.

 Control blocks associated with a process are stored in the
kernel.

 Information in these control blocks is used by the kernel for
process control and CPU scheduling.

A.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Control BlocksProcess Control Blocks

 The most basic data structure associated with processes is the
process structure.

 unique process identifier

 scheduling information (e.g., priority)

 pointers to other control blocks

 The virtual address space of a user process is divided into text
(program code), data, and stack segments.

 Every process with sharable text has a pointer form its process
structure to a text structure.

 always resident in main memory.

 records how many processes are using the text segment

 records were the page table for the text segment can be
found on disk when it is swapped.

A.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System Data SegmentSystem Data Segment

 Most ordinary work is done in user mode; system calls are
performed in system mode.

 The system and user phases of a process never execute
simultaneously.

 a kernel stack (rather than the user stack) is used for a process
executing in system mode.

 The kernel stack and the user structure together compose the
system data segment for the process.

A.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Finding parts of a process using process structure Finding parts of a process using process structure

A.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Allocating a New Process StructureAllocating a New Process Structure

 fork allocates a new process structure for the child process, and
copies the user structure.

 new page table is constructed

 new main memory is allocated for the data and stack segments
of the child process

 copying the user structure preserves open file descriptors, user
and group identifiers, signal handling, etc.

A.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Allocating a New Process Structure (Cont.)Allocating a New Process Structure (Cont.)

 vfork does not copy the data and stack to t he new process; the
new process simply shares the page table of the old one.

 new user structure and a new process structure are still created

 commonly used by a shell to execute a command and to wait
for its completion

 A parent process uses vfork to produce a child process; the child
uses execve to change its virtual address space, so there is no
need for a copy of the parent.

 Using vfork with a large parent process saves CPU time, but can
be dangerous since any memory change occurs in both processes
until execve occurs.

 execve creates no new process or user structure; rather the text
and data of the process are replaced.

A.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

CPU SchedulingCPU Scheduling

 Every process has a scheduling priority associated with it; larger
numbers indicate lower priority.

 Negative feedback in CPU scheduling makes it difficult for a single
process to take all the CPU time.

 Process aging is employed to prevent starvation.

 When a process chooses to relinquish the CPU, it goes to sleep on
an event.

 When that event occurs, the system process that knows about it
calls wakeup with the address corresponding to the event, and all
processes that had done a sleep on the same address are put in
the ready queue to be run.

A.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory ManagementMemory Management

 The initial memory management schemes were constrained in size
by the relatively small memory resources of the PDP machines on
which UNIX was developed.

 Pre 3BSD system use swapping exclusively to handle memory
contention among processes: If there is too much contention,
processes are swapped out until enough memory is available.

 Allocation of both main memory and swap space is done first-fit.

A.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory Management (Cont.)Memory Management (Cont.)

 Sharable text segments do not need to be swapped; results in less
swap traffic and reduces the amount of main memory required for
multiple processes using the same text segment.

 The scheduler process (or swapper) decides which processes to
swap in or out, considering such factors as time idle, time in or out
of main memory, size, etc.

 In f.3BSD, swap space is allocated in pieces that are multiples of
power of 2 and minimum size, up to a maximum size determined by
the size or the swap-space partition on the disk.

A.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Paging

 Berkeley UNIX systems depend primarily on paging for memory-
contention management, and depend only secondarily on
swapping.

 Demand paging – When a process needs a page and the page is
not there, a page fault tot he kernel occurs, a frame of main
memory is allocated, and the proper disk page is read into the
frame.

 A pagedaemon process uses a modified second-chance page-
replacement algorithm to keep enough free frames to support the
executing processes.

 If the scheduler decides that the paging system is overloaded,
processes will be swapped out whole until the overload is relieved.

A.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File SystemFile System

 The UNIX file system supports two main objects: files and
directories.

 Directories are just files with a special format, so the representation
of a file is the basic UNIX concept.

A.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Blocks and FragmentsBlocks and Fragments

 Most of the file system is taken up by data blocks.

 4.2BSD uses two block sized for files which have no indirect
blocks:

 All the blocks of a file are of a large block size (such as 8K),
except the last.

 The last block is an appropriate multiple of a smaller fragment
size (i.e., 1024) to fill out the file.

 Thus, a file of size 18,000 bytes would have two 8K blocks and
one 2K fragment (which would not be filled completely).

A.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Blocks and Fragments (Cont.)Blocks and Fragments (Cont.)

 The block and fragment sizes are set during file-system creation
according to the intended use of the file system:

 If many small files are expected, the fragment size should be
small.

 If repeated transfers of large files are expected, the basic block
size should be large.

 The maximum block-to-fragment ratio is 8 : 1; the minimum block
size is 4K (typical choices are 4096 : 512 and 8192 : 1024).

A.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

InodesInodes

 A file is represented by an inode — a record that stores information
about a specific file on the disk.

 The inode also contains 15 pointer to the disk blocks containing the
file’s data contents.
 First 12 point to direct blocks.
 Next three point to indirect blocks

 First indirect block pointer is the address of a single indirect
block — an index block containing the addresses of blocks
that do contain data.

 Second is a double-indirect-block pointer, the address of a
block that contains the addresses of blocks that contain
pointer to the actual data blocks.

 A triple indirect pointer is not needed; files with as many as
232 bytes will use only double indirection.

A.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DirectoriesDirectories

 The inode type field distinguishes between plain files and
directories.

 Directory entries are of variable length; each entry contains first the
length of the entry, then the file name and the inode number.

 The user refers to a file by a path name,whereas the file system
uses the inode as its definition of a file.

 The kernel has to map the supplied user path name to an inode

 Directories are used for this mapping.

A.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Directories (Cont.)Directories (Cont.)

 First determine the starting directory:

 If the first character is “/”, the starting directory is the root
directory.

 For any other starting character, the starting directory is the
current directory.

 The search process continues until the end of the path name is
reached and the desired inode is returned.

 Once the inode is found, a file structure is allocated to point to the
inode.

 4.3BSD improved file system performance by adding a directory
name cache to hold recent directory-to-inode translations.

A.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Mapping of a File Descriptor to an InodeMapping of a File Descriptor to an Inode

 System calls that refer to open files indicate the file is passing a file
descriptor as an argument.

 The file descriptor is used by the kernel to index a table of open
files for the current process.

 Each entry of the table contains a pointer to a file structure.

 This file structure in turn points to the inode.

 Since the open file table has a fixed length which is only setable at
boot time, there is a fixed limit on the number of concurrently open
files in a system.

A.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File-System Control BlocksFile-System Control Blocks

A.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Disk StructuresDisk Structures

 The one file system that a user ordinarily sees may actually consist
of several physical file systems, each on a different device.

 Partitioning a physical device into multiple file systems has several
benefits.

 Different file systems can support different uses.

 Reliability is improved

 Can improve efficiency by varying file-system parameters.

 Prevents one program form using all available space for a large
file.

 Speeds up searches on backup tapes and restoring partitions
from tape.

A.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Disk Structures (Cont.)Disk Structures (Cont.)

 The root file system is always available on a drive.

 Other file systems may be mounted — i.e., integrated into the
directory hierarchy of the root file system.

 The following figure illustrates how a directory structure is
partitioned into file systems, which are mapped onto logical
devices, which are partitions of physical devices.

A.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Mapping File System to Physical DevicesMapping File System to Physical Devices

A.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ImplementationsImplementations

 The user interface to the file system is simple and well defined,
allowing the implementation of the file system itself to be changed
without significant effect on the user.

 For Version 7, the size of inodes doubled, the maximum file and file
system sized increased, and the details of free-list handling and
superblock information changed.

 In 4.0BSD, the size of blocks used in the file system was increased
form 512 bytes to 1024 bytes — increased internal fragmentation, but
doubled throughput.

 4.2BSD added the Berkeley Fast File System, which increased speed,
and included new features.

 New directory system calls

 truncate calls

 Fast File System found in most implementations of UNIX.

A.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Layout and Allocation PolicyLayout and Allocation Policy

 The kernel uses a <logical device number, inode number> pair to
identify a file.

 The logical device number defines the file system involved.

 The inodes in the file system are numbered in sequence.

 4.3BSD introduced the cylinder group — allows localization of the
blocks in a file.

 Each cylinder group occupies one or more consecutive
cylinders of the disk, so that disk accesses within the cylinder
group require minimal disk head movement.

 Every cylinder group has a superblock, a cylinder block, an
array of inodes, and some data blocks.

A.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

4.3BSD Cylinder Group4.3BSD Cylinder Group

A.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

I/O SystemI/O System

 The I/O system hides the peculiarities of I/O devices from the bulk
of the kernel.

 Consists of a buffer caching system, general device driver code,
and drivers for specific hardware devices.

 Only the device driver knows the peculiarities of a specific device.

A.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

4.3 BSD Kernel I/O Structure4.3 BSD Kernel I/O Structure

A.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Block Buffer CacheBlock Buffer Cache

 Consist of buffer headers, each of which can point to a piece of
physical memory, as well as to a device number and a block
number on the device.

 The buffer headers for blocks not currently in use are kept in
several linked lists:

 Buffers recently used, linked in LRU order (LRU list).

 Buffers not recently used, or without valid contents (AGE list).

 EMPTY buffers with no associated physical memory.

 When a block is wanted from a device, the cache is searched.

 If the block is found it is used, and no I/O transfer is necessary.

 If it is not found, a buffer is chosen from the AGE list, or the LRU
list if AGE is empty.

A.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Block Buffer Cache (Cont.)Block Buffer Cache (Cont.)

 Buffer cache size effects system performance; if it is large enough,
the percentage of cache hits can be high and the number of actual
I/O transfers low.

 Data written to a disk file are buffered in the cache, and the disk
driver sorts its output queue according to disk address — these
actions allow the disk driver to minimize disk head seeks and to
write data at times optimized for disk rotation.

A.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Raw Device InterfacesRaw Device Interfaces

 Almost every block device has a character interface, or raw device
interface — unlike the block interface, it bypasses the block buffer
cache.

 Each disk driver maintains a queue of pending transfers.

 Each record in the queue specifies:

 whether it is a read or a write

 a main memory address for the transfer

 a device address for the transfer

 a transfer size

 It is simple to map the information from a block buffer to what is
required for this queue.

A.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

C-ListsC-Lists

 Terminal drivers use a character buffering system which involves
keeping small blocks of characters in linked lists.

 A write system call to a terminal enqueues characters on a list for
the device. An initial transfer is started, and interrupts cause
dequeueing of characters and further transfers.

 Input is similarly interrupt driven.

 It is also possible to have the device driver bypass the canonical
queue and return characters directly form the raw queue — raw
mode (used by full-screen editors and other programs that need to
react to every keystroke).

A.57 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Interprocess CommunicationInterprocess Communication

 The pipe is the IPC mechanism most characteristic of UNIX.

 Permits a reliable unidirectional byte stream between two
processes.

 A benefit of pipes small size is that pipe data are seldom written
to disk; they usually are kept in memory by the normal block
buffer cache.

 In 4.3BSD, pipes are implemented as a special case of the socket
mechanism which provides a general interface not only to facilities
such as pipes, which are local to one machine, but also to
networking facilities.

 The socket mechanism can be used by unrelated processes.

A.58 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SocketsSockets

 A socket is an endpont of communication.

 An in-use socket it usually bound with an address; the nature of the
address depends on the communication domain of the socket.

 A characteristic property of a domain is that processes
communication in the same domain use the same address format.

 A single socket can communicate in only one domain — the three
domains currently implemented in 4.3BSD are:

 the UNIX domain (AF_UNIX)

 the Internet domain (AF_INET)

 the XEROX Network Service (NS) domain (AF_NS)

A.59 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Socket TypesSocket Types

 Stream sockets provide reliable, duplex, sequenced data streams.
Supported in Internet domain by the TCP protocol. In UNIX domain,
pipes are implemented as a pair of communicating stream sockets.

 Sequenced packet sockets provide similar data streams, except that
record boundaries are provided. Used in XEROX AF_NS protocol.

 Datagram sockets transfer messages of variable size in either
direction. Supported in Internet domain by UDP protocol

 Reliably delivered message sockets transfer messages that are
guaranteed to arrive. Currently unsupported.

 Raw sockets allow direct access by processes to the protocols that
support the other socket types; e.g., in the Internet domain, it is
possible to reach TCP, IP beneath that, or a deeper Ethernet protocol.
Useful for developing new protocols.

A.60 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Socket System CallsSocket System Calls

 The socket call creates a socket; takes as arguments specifications of
the communication domain, socket type, and protocol to be used and
returns a small integer called a socket descriptor.

 A name is bound to a socket by the bind system call.

 The connect system call is used to initiate a connection.

 A server process uses socket to create a socket and bind to bind the
well-known address of its service to that socket.

 Uses listen to tell the kernel that it is ready to accept connections
from clients.

 Uses accept to accept individual connections.

 Uses fork to produce a new process after the accept to service
the client while the original server process continues to listen for
more connections.

A.61 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Socket System Calls (Cont.)Socket System Calls (Cont.)

 The simplest way to terminate a connection and to destroy the
associated socket is to use the close system call on its socket
descriptor.

 The select system call can be used to multiplex data transfers on
several file descriptors and /or socket descriptors

A.62 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Network SupportNetwork Support

 Networking support is one of the most important features in
4.3BSD.

 The socket concept provides the programming mechanism to
access other processes, even across a network.

 Sockets provide an interface to several sets of protocols.

 Almost all current UNIX systems support UUCP.

 4.3BSD supports the DARPA Internet protocols UDP, TCP, IP, and
ICMP on a wide range of Ethernet, token-ring, and ARPANET
interfaces.

 The 4.3BSD networking implementation, and to a certain extent the
socket facility, is more oriented toward the ARPANET Reference
Model (ARM).

A.63 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Network Reference models and LayeringNetwork Reference models and Layering

End of Module AEnd of Module A

