

Chapter 17: Distributed-File SystemsChapter 17: Distributed-File Systems

17.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 17 Distributed-File SystemsChapter 17 Distributed-File Systems

 Background

 Naming and Transparency

 Remote File Access

 Stateful versus Stateless Service

 File Replication

 An Example: AFS

17.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter ObjectivesChapter Objectives

 To explain the naming mechanism that provides location
transparency and independence

 To describe the various methods for accessing distributed files

 To contrast stateful and stateless distributed file servers

 To show how replication of files on different machines in a
distributed file system is a useful redundancy for improving
availability

 To introduce the Andrew file system (AFS) as an example of a
distributed file system

17.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BackgroundBackground

 Distributed file system (DFS) – a distributed implementation of the
classical time-sharing model of a file system, where multiple users
share files and storage resources

 A DFS manages set of dispersed storage devices

 Overall storage space managed by a DFS is composed of different,
remotely located, smaller storage spaces

 There is usually a correspondence between constituent storage
spaces and sets of files

17.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DFS StructureDFS Structure

 Service – software entity running on one or more machines and
providing a particular type of function to a priori unknown clients

 Server – service software running on a single machine

 Client – process that can invoke a service using a set of
operations that forms its client interface

 A client interface for a file service is formed by a set of primitive file
operations (create, delete, read, write)

 Client interface of a DFS should be transparent, i.e., not distinguish
between local and remote files

17.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Naming and TransparencyNaming and Transparency

 Naming – mapping between logical and physical objects

 Multilevel mapping – abstraction of a file that hides the details of
how and where on the disk the file is actually stored

 A transparent DFS hides the location where in the network the file
is stored

 For a file being replicated in several sites, the mapping returns a
set of the locations of this file’s replicas; both the existence of
multiple copies and their location are hidden

17.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Naming Structures Naming Structures

 Location transparency – file name does not reveal the file’s
physical storage location
 File name still denotes a specific, although hidden, set of

physical disk blocks
 Convenient way to share data
 Can expose correspondence between component units and

machines

 Location independence – file name does not need to be changed
when the file’s physical storage location changes
 Better file abstraction
 Promotes sharing the storage space itself
 Separates the naming hierarchy form the storage-devices

hierarchy

17.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Naming Schemes — Three Main Approaches Naming Schemes — Three Main Approaches

 Files named by combination of their host name and local name;
guarantees a unique systemwide name

 Attach remote directories to local directories, giving the appearance
of a coherent directory tree; only previously mounted remote
directories can be accessed transparently

 Total integration of the component file systems

 A single global name structure spans all the files in the system

 If a server is unavailable, some arbitrary set of directories on
different machines also becomes unavailable

17.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Remote File Access Remote File Access

 Remove-service mechanism is one transfer approach
 Reduce network traffic by retaining recently accessed disk blocks in

a cache, so that repeated accesses to the same information can be
handled locally

 If needed data not already cached, a copy of data is brought
from the server to the user

 Accesses are performed on the cached copy
 Files identified with one master copy residing at the server

machine, but copies of (parts of) the file are scattered in
different caches

 Cache-consistency problem – keeping the cached copies
consistent with the master file
 Could be called network virtual memory

17.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Cache Location – Disk vs. Main MemoryCache Location – Disk vs. Main Memory

 Advantages of disk caches

 More reliable

 Cached data kept on disk are still there during recovery and
don’t need to be fetched again

 Advantages of main-memory caches:

 Permit workstations to be diskless

 Data can be accessed more quickly

 Performance speedup in bigger memories

 Server caches (used to speed up disk I/O) are in main memory
regardless of where user caches are located; using main-
memory caches on the user machine permits a single caching
mechanism for servers and users

17.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Cache Update PolicyCache Update Policy

 Write-through – write data through to disk as soon as they are placed on
any cache

 Reliable, but poor performance

 Delayed-write – modifications written to the cache and then written through
to the server later

 Write accesses complete quickly; some data may be overwritten
before they are written back, and so need never be written at all

 Poor reliability; unwritten data will be lost whenever a user machine
crashes

 Variation – scan cache at regular intervals and flush blocks that have
been modified since the last scan

 Variation – write-on-close, writes data back to the server when the file
is closed

 Best for files that are open for long periods and frequently modified

17.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Cachefs and its Use of CachingCachefs and its Use of Caching

17.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ConsistencyConsistency

 Is locally cached copy of the data consistent with the master copy?

 Client-initiated approach
 Client initiates a validity check

 Server checks whether the local data are consistent with the
master copy

 Server-initiated approach
 Server records, for each client, the (parts of) files it caches

 When server detects a potential inconsistency, it must react

17.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Comparing Caching and Remote ServiceComparing Caching and Remote Service

 In caching, many remote accesses handled efficiently by the local
cache; most remote accesses will be served as fast as local ones

 Servers are contracted only occasionally in caching (rather than for
each access)

 Reduces server load and network traffic

 Enhances potential for scalability

 Remote server method handles every remote access across the
network; penalty in network traffic, server load, and performance

 Total network overhead in transmitting big chunks of data (caching)
is lower than a series of responses to specific requests (remote-
service)

17.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Caching and Remote Service (Cont.)Caching and Remote Service (Cont.)

 Caching is superior in access patterns with infrequent writes

 With frequent writes, substantial overhead incurred to
overcome cache-consistency problem

 Benefit from caching when execution carried out on machines with
either local disks or large main memories

 Remote access on diskless, small-memory-capacity machines
should be done through remote-service method

 In caching, the lower intermachine interface is different form the
upper user interface

 In remote-service, the intermachine interface mirrors the local user-
file-system interface

17.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Stateful File ServiceStateful File Service

 Mechanism
 Client opens a file
 Server fetches information about the file from its disk, stores it

in its memory, and gives the client a connection identifier
unique to the client and the open file

 Identifier is used for subsequent accesses until the session
ends

 Server must reclaim the main-memory space used by clients
who are no longer active

 Increased performance
 Fewer disk accesses
 Stateful server knows if a file was opened for sequential access

and can thus read ahead the next blocks

17.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Stateless File ServerStateless File Server

 Avoids state information by making each request self-contained

 Each request identifies the file and position in the file

 No need to establish and terminate a connection by open and close
operations

17.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Distinctions Between Stateful & Stateless Service Distinctions Between Stateful & Stateless Service

 Failure Recovery

 A stateful server loses all its volatile state in a crash

 Restore state by recovery protocol based on a dialog with
clients, or abort operations that were underway when the
crash occurred

 Server needs to be aware of client failures in order to
reclaim space allocated to record the state of crashed client
processes (orphan detection and elimination)

 With stateless server, the effects of server failure sand
recovery are almost unnoticeable

 A newly reincarnated server can respond to a self-contained
request without any difficulty

17.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Distinctions (Cont.)Distinctions (Cont.)

 Penalties for using the robust stateless service:

 longer request messages

 slower request processing

 additional constraints imposed on DFS design

 Some environments require stateful service

 A server employing server-initiated cache validation cannot
provide stateless service, since it maintains a record of which
files are cached by which clients

 UNIX use of file descriptors and implicit offsets is inherently
stateful; servers must maintain tables to map the file
descriptors to inodes, and store the current offset within a file

17.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File ReplicationFile Replication

 Replicas of the same file reside on failure-independent machines

 Improves availability and can shorten service time

 Naming scheme maps a replicated file name to a particular replica

 Existence of replicas should be invisible to higher levels

 Replicas must be distinguished from one another by different
lower-level names

 Updates – replicas of a file denote the same logical entity, and thus
an update to any replica must be reflected on all other replicas

 Demand replication – reading a nonlocal replica causes it to be
cached locally, thereby generating a new nonprimary replica.

17.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

An Example: AFSAn Example: AFS

 A distributed computing environment (Andrew) under development
since 1983 at Carnegie-Mellon University, purchased by IBM and
released as Transarc DFS, now open sourced as OpenAFS

 AFS tries to solve complex issues such as uniform name space,
location-independent file sharing, client-side caching (with cache
consistency), secure authentication (via Kerberos)

 Also includes server-side caching (via replicas), high availability

 Can span 5,000 workstations

17.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ANDREW (Cont.)ANDREW (Cont.)

 Clients are presented with a partitioned space of file names: a
local name space and a shared name space

 Dedicated servers, called Vice, present the shared name space to
the clients as an homogeneous, identical, and location transparent
file hierarchy

 The local name space is the root file system of a workstation, from
which the shared name space descends

 Workstations run the Virtue protocol to communicate with Vice, and
are required to have local disks where they store their local name
space

 Servers collectively are responsible for the storage and
management of the shared name space

17.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ANDREW (Cont.)ANDREW (Cont.)

 Clients and servers are structured in clusters interconnected by a
backbone LAN

 A cluster consists of a collection of workstations and a cluster
server and is connected to the backbone by a router

 A key mechanism selected for remote file operations is whole file
caching

 Opening a file causes it to be cached, in its entirety, on the
local disk

17.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ANDREW Shared Name SpaceANDREW Shared Name Space

 Andrew’s volumes are small component units associated with the
files of a single client

 A fid identifies a Vice file or directory - A fid is 96 bits long and has
three equal-length components:

 volume number

 vnode number – index into an array containing the inodes of
files in a single volume

 uniquifier – allows reuse of vnode numbers, thereby keeping
certain data structures, compact

 Fids are location transparent; therefore, file movements from server
to server do not invalidate cached directory contents

 Location information is kept on a volume basis, and the information
is replicated on each server

17.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ANDREW File OperationsANDREW File Operations

 Andrew caches entire files form servers

 A client workstation interacts with Vice servers only during
opening and closing of files

 Venus – caches files from Vice when they are opened, and stores
modified copies of files back when they are closed

 Reading and writing bytes of a file are done by the kernel without
Venus intervention on the cached copy

 Venus caches contents of directories and symbolic links, for path-
name translation

 Exceptions to the caching policy are modifications to directories
that are made directly on the server responsibility for that directory

17.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ANDREW ImplementationANDREW Implementation

 Client processes are interfaced to a UNIX kernel with the usual set
of system calls

 Venus carries out path-name translation component by component

 The UNIX file system is used as a low-level storage system for both
servers and clients

 The client cache is a local directory on the workstation’s disk

 Both Venus and server processes access UNIX files directly by
their inodes to avoid the expensive path name-to-inode translation
routine

17.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ANDREW Implementation (Cont.)ANDREW Implementation (Cont.)

 Venus manages two separate caches:

 one for status

 one for data

 LRU algorithm used to keep each of them bounded in size

 The status cache is kept in virtual memory to allow rapid servicing
of stat (file status returning) system calls

 The data cache is resident on the local disk, but the UNIX I/O
buffering mechanism does some caching of the disk blocks in
memory that are transparent to Venus

End of Chapter 17End of Chapter 17

17.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Fig. 17.01Fig. 17.01

