Chapter 21: The Linux System
QIBBO DI IBBD DI IR IS BB IS

Chapter 21: The Linux System

Linux History

Design Principles

Kernel Modules

Process Management
Scheduling

Memory Management

File Systems

Input and Output
Interprocess Communication
Network Structure

Security

Operating System Concepts 21.2

Objectives

B To explore the history of the UNIX operating system from which
Linux is derived and the principles which Linux is designed upon

B To examine the Linux process model and illustrate how Linux
schedules processes and provides interprocess communication

B To look at memory management in Linux

B To explore how Linux implements file systems and manages 1/0O
devices

Operating System Concepts 21.3

History

B |inuxis a modern, free operating system based on UNIX
standards

B First developed as a small but self-contained kernel in 1991 by
Linus Torvalds, with the major design goal of UNIX compatibility

B |ts history has been one of collaboration by many users from all
around the world, corresponding almost exclusively over the
Internet

B |t has been designed to run efficiently and reliably on common
PC hardware, but also runs on a variety of other platforms

B The core Linux operating system kernel is entirely original, but it
can run much existing free UNIX software, resulting in an entire
UNIX-compatible operating system free from proprietary code

B Many, varying Linux Distributions including the kernel, applications,
and management tools

Operating System Concepts 21.4 Silberschatz, Galvin and Gagne ©2005

The Linux Kernel

B Version 0.01 (May 1991) had no networking, ran only on 80386-
compatible Intel processors and on PC hardware, had extremely
limited device-drive support, and supported only the Minix file
system

B Linux 1.0 (March 1994) included these new features:

® Support for UNIX’s standard TCP/IP networking protocols
BSD-compatible socket interface for networking programming
Device-driver support for running IP over an Ethernet
Enhanced file system

Support for a range of SCSI controllers for
high-performance disk access

® Extra hardware support
B Version 1.2 (March 1995) was the final PC-only Linux kernel

Y »=
Operating System Concepts 215 Silberschatz, Galvin and Gagne ©2005

Linux 2.0

B Released in June 1996, 2.0 added two major new capabilities:
® Support for multiple architectures, including a fully 64-bit native Alpha port
® Support for multiprocessor architectures
B Other new features included:
® Improved memory-management code
® Improved TCP/IP performance

® Support for internal kernel threads, for handling dependencies between
loadable modules, and for automatic loading of modules on demand

® Standardized configuration interface

B Available for Motorola 68000-series procesSors, Sun Sparc systems, and for
PC and PowerMac systems

B 2.4 and 2.6 increased SMP support, added journaling file system, preemptive
kernel, 64-bit memory support

¥

Operating System Concepts 21.6 Silberschatz, Galvin and Gagne ©2005

The Linux System

B Linux uses many tools developed as part of Berkeley’'s BSD
operating system, MIT’s X Window System, and the Free Software
Foundation's GNU project

B The min system libraries were started by the GNU project, with
Improvements provided by the Linux community

B Linux networking-administration tools were derived from 4.3BSD
code: recent BSD derivatives such as Free BSD have borrowed
code from Linux in return

B The Linux system is maintained by a loose network of developers
collaborating over the Internet, with a small number of public ftp
sites acting as de facto standard repositories

Operating System Concepts 21.7 Silberschatz, Galvin and Gagne ©2005

Linux Distributions

B Standard, precompiled sets of packages, or distributions, include
the basic Linux system, system installation and management
utilities, and ready-to-install packages of common UNIX tools

B The first distributions managed these packages by simply providing
a means of unpacking all the files into the appropriate places;
modern distributions include advanced package management

B Early distributions included SLS and Slackware

® Red Hat and Debian are popular distributions from commercial
and noncommercial sources, respectively

B The RPM Package file format permits Compatibility among the
various Linux distributions

Operating System Concepts 21.8 Silberschatz, Galvin and Gagne ©2005

Linux Licensing

B The Linux kernel is distributed under the GNU General Public

License (GPL), the terms of which are set out by the Free Software
Foundation

B Anyone using Linux, or creating their own derivative of Linux, may
not make the derived product proprietary; software released under
the GPL may not be redistributed as a binary-only product

4 = o
Operating System Concepts 21.9 Silberschatz, Galvin and Gagne ©2005

Design Principles

B Linux is a multiuser, multitasking system with a full set of UNIX-
compatible tools

B |ts file system adheres to traditional UNIX semantics, and it fully
Implements the standard UNIX networking model

B Main design goals are speed, efficiency, and standardization

B Linux is designed to be compliant with the relevant POSIX
documents: at least two Linux distributions have achieved official
POSIX certification

B The Linux programming interface adheres to the SVR4 UNIX
semantics, rather than to BSD behavior

. o =
Operating System Concepts 21.10 Silberschatz, Galvin and Gagne ©2005

Components of a Linux System

system-
management
programs

user
utility
programs

user
Processes

compilers

system shared libraries

Linux kernel

Operating System Concepts

loadable kernel modules

21.11

Components of a Linux System (Cont.)

B |ike most UNIX implementations, Linux is composed of three main
bodies of code; the most important distinction between the kernel

and all other components

B The kernel is responsible for maintaining the important
abstractions of the operating system

® Kernel code executes in kernel mode with full access to all the
physical resources of the computer

® All kernel code and data structures are kept in the same single
address space

— a4
BN i O

Operating System Concepts 21.12 Silberschatz, Galvin and Gagne ©2005

Components of a Linux System (Cont.)

B The system libraries define a standard set of functions through
which applications interact with the kernel, and which implement
much of the operating-system functionality that does not need the
full privileges of kernel code

B The system utilities perform individual specialized management
tasks

Operating System Concepts 21.13 Silberschatz, Galvin and Gagne ©2005

Kernel Modules

B Sections of kernel code that can be compiled, loaded, and
unloaded independent of the rest of the kernel

B A kernel module may typically implement a device driver, a file
system, or a networking protocol

B The module interface allows third parties to write and distribute,
on their own terms, device drivers or file systems that could not
be distributed under the GPL

B Kernel modules allow a Linux system to be set up with a
standard, minimal kernel, without any extra device drivers built in

B Three components to Linux module su'pport:
® module management
® driver registration
® conflict resolution

Operating System Concepts 21.14 Silberschatz, Galvin and Gagne ©2005

Module Management

B Supports loading modules into memory and letting them talk to the
rest of the kernel

B Module loading is split into two separate sections:
® Managing sections of module code in kernel memory
® Handling symbols that modules are allowed to reference

B The module requestor manages loading requested, but currently
unloaded, modules; it also regularly queries the kernel to see
whether a dynamically loaded module is still in use, and will unload
it when it is no longer actively needed

NG
Operating System Concepts 21.15 Silberschatz, Galvin and Gagne ©2005

Driver Registration

B Allows modules to tell the rest of the kernel that a new driver has
become available

B The kernel maintains dynamic tables of all known drivers, and
provides a set of routines to allow drivers to be added to or
removed from these tables at any time

B Registration tables include the following items:
® Device drivers
® File systems
® Network protocols
® Binary format

R o "
Operating System Concepts 21.16 Silberschatz, Galvin and Gagne ©2005

Conflict Resolution

B A mechanism that allows different device drivers to reserve
hardware resources and to protect those resources from accidental
use by another driver

B The conflict resolution module aims to:

® Prevent modules from clashing over access to hardware
resources

® Prevent autoprobes from interfering with existing device drivers

® Resolve conflicts with multiple drivers trying to access the same
hardware

Operating System Concepts 21.17 Silberschatz, Galvin and Gagne ©2005

Process Management

B UNIX process management separates the creation of processes
and the running of a new program into two distinct operations.

® The fork system call creates a new process
® A new program is run after a call to execve

B Under UNIX, a process encompasses all the information that the
operating system must maintain t track the context of a single
execution of a single program

B Under Linux, process properties fall into three groups: the
process’s identity, environment, and context

Operating System Concepts 21.18

Process ldentity

B Process ID (PID). The unique identifier for the process; used to
specify processes to the operating system when an application makes
a system call to signal, modify, or wait for another process

B Credentials. Each process must have an associated user ID and one
or more group IDs that determine the process’s rights to access
system resources and files

B Personality. Not traditionally found on UNIX systems, but under Linux
each process has an associated personality identifier that can slightly
modify the semantics of certain system calls

® Used primarily by emulation libraries to request that system calls
be compatible with certain specific flavors of UNIX

Operating System Concepts 21.19 Silberschatz, Galvin and Gagne ©2005

Process Environment

B The process’s environment is inherited from its parent, and is
composed of two null-terminated vectors:

® The argument vector lists the command-line arguments used to
invoke the running program; conventionally starts with the name of
the program itself

® The environment vector is a list of “NAME=VALUE" pairs that
associates named environment variables with arbitrary textual
values

B Passing environment variables among processes and inheriting
variables by a process’s children are flexible means of passing
information to components of the user-mode system software

B The environment-variable mechanism provides a customization of the
operating system that can be set on a per-process basis, rather than
being configured for the system as a whole

Operating System Concepts 21.20 Silberschatz, Galvin and Gagne ©2005

Process Context

B The (constantly changing) state of a running program at any point
in time
B The scheduling context is the most important part of the process

context; it is the information that the scheduler needs to suspend
and restart the process

B The kernel maintains accounting information about the resources
currently being consumed by each process, and the total resources
consumed by the process in its lifetime so far

B The file table is an array of pointers to kernel file structures

® When making file I/O system calls, processes refer to files by
their index into this table

Operating System Concepts 21.21 Silberschatz, Galvin and Gagne ©2005

Process Context (Cont.)

B \Whereas the file table lists the existing open files, the
file-system context applies to requests to open new files

® The current root and default directories to be used for new file
searches are stored here

B The signal-handler table defines the routine in the process’s
address space to be called when specific signals arrive

B The virtual-memory context of a process describes the full
contents of the its private address space

Ve v "
Operating System Concepts 21.22 Silberschatz, Galvin and Gagne ©2005

Processes and Threads

B |inux uses the same internal representation for processes and
threads; a thread is simply a new process that happens to share
the same address space as its parent

B A distinction is only made when a new thread is created by the
clone system call

® fork creates a new process with its own entirely new process
context

® clone creates a new process with its own identity, but that is
allowed to share the data structures of its parent

B Using clone gives an application fine-grained control over exactly
what is shared between two threads

g G
e v

Operating System Concepts 21.23 Silberschatz, Galvin and Gagne ©2005

Scheduling

B The job of allocating CPU time to different tasks within an operating
system

B While scheduling is normally thought of as the running and
interrupting of processes, in Linux, scheduling also includes the
running of the various kernel tasks

B Running kernel tasks encompasses both tasks that are requested
by a running process and tasks that execute internally on behalf of
a device driver

B As of 2.5, new scheduling algorithm — preemptive, priority-based
® Real-time range
® nice value

NG
Operating System Concepts 21.24 Silberschatz, Galvin and Gagne ©2005

Relationship Between Priorities and Time-
slice Length

numeric relative time
priority priority guantum

0 highest 200 ms

real-time
. tasks

99
100

. other
. tasks

140 lowest

10 ms

Operating System Concepts 21.25

List of Tasks Indexed by Priority

active expired
array array
lpriority task lists priority task lists
[0] Oo—0O [0] Oo—CO
[1] O—0O0—0 [1] O
|1 0| O |140| e—@

Operating System Concepts 21.26 Silberschatz, Galvin and Gagne 20b5

Kernel Synchronization

B A request for kernel-mode execution can occur in two ways:

® A running program may request an operating system service,
either explicitly via a system call, or implicitly, for example,
when a page fault occurs

® A device driver may deliver a hardware interrupt that causes
the CPU to start executing a kernel-defined handler for that
Interrupt

B Kernel synchronization requires a framework that will allow the
kernel’s critical sections to run without mterruptlon by another
critical section

Operating System Concepts 21.27 Silberschatz, Galvin and Gagne ©2005

Kernel Synchronization (Cont.)

B |inux uses two techniques to protect critical sections:

1. Normal kernel code is nonpreemptible (until 2.4)

— when a time interrupt is received while a process is
executing a kernel system service routine, the kernel’s
need resched flag is set so that the scheduler will run
once the system call has completed and control is
about to be returned to user mode

2. The second technigue applies to critical sections that occur in
an interrupt service routines

— By using the processor’s interrupt control hardware to disable
Interrupts during a critical section, the kernel guarantees that it
can proceed without the risk of concurrent access of shared
data structures

/‘*»3 %
Operating System Concepts 21.28 Silberschatz, Galvin and Gagne ©2005

Kernel Synchronization (Cont.)

B To avoid performance penalties, Linux’s kernel uses a
synchronization architecture that allows long critical sections to run

without having interrupts disabled for the critical section’s entire
duration

B |nterrupt service routines are separated into a top half and a bottom
half.

® The top half is a normal interrupt service routine, and runs with
recursive interrupts disabled

® The bottom half is run, with all interrupts enabled, by a
miniature scheduler that ensures that bottom halves never
interrupt themselves

® This architecture is completed by a mechanism for disabling
selected bottom halves while executing normal, foreground
kernel code

. o =
Operating System Concepts 21.29 Silberschatz, Galvin and Gagne ©2005

Interrupt Protection Levels

top-half interrupt handlers

bottom-half interrupt handlers

kernel-system service routines (preemptible)

increasing priority >-

user-mode programs (preemptible)

B Each level may be interrupted by code running at a higher
level, but will never be interrupted by code running at the
same or a lower level

B User processes can always be preempted by another process
when a time-sharing scheduling interrupt occurs

vt "
Operating System Concepts 21.30 Silberschatz, Galvin and Gagne ©2005

Process Scheduling

B Linux uses two process-scheduling algorithms:

® A time-sharing algorithm for fair preemptive scheduling between
multiple processes

® A real-time algorithm for tasks where absolute priorities are more
Important than fairness

B A process’s scheduling class defines which algorithm to apply

B For time-sharing processes, Linux uses a prioritized, credit based
algorithm

® The crediting rule
edits

) cr
credits : =
2

+ priority

factors in both the process’s history and its priority

® This crediting system automatically prioritizes interactive or I/O-
bound processes

Ve v

Operating System Concepts 21.31 Silberschatz, Galvin and Gagne ©2005

Process Scheduling (Cont.)

B Linux implements the FIFO and round-robin real-time scheduling
classes; in both cases, each process has a priority in addition to its
scheduling class

® The scheduler runs the process with the highest priority; for
equal-priority processes, it runs the process waiting the longest

® FIFO processes continue to run until they either exit or block

® A round-robin process will be preempted after a while and
moved to the end of the scheduling queue, so that round-robing
processes of equal priority automatlcally time-share between
themselves

Operating System Concepts 21.32 Silberschatz, Galvin and Gagne ©2005

Symmetric Multiprocessing

B |inux 2.0 was the first Linux kernel to support SMP hardware;
separate processes or threads can execute in parallel on separate
processors

B To preserve the kernel's nonpreemptible synchronization
requirements, SMP imposes the restriction, via a single kernel
spinlock, that only one processor at a time may execute kernel-
mode code

R o "
Operating System Concepts 21.33 Silberschatz, Galvin and Gagne ©2005

Memory Management

B |inux’'s physical memory-management system deals with allocating
and freeing pages, groups of pages, and small blocks of memory

B |t has additional mechanisms for handling virtual memory, memory
mapped into the address space of running processes

B Splits memory into 3 different zones due to hardware
characteristics

— :,* ‘ .‘
Operating System Concepts 21.34 Silberschatz, Galvin and Gagne ©2005

&% Relationship of Zones and Physical Addresses

on 80x86
zone physical memory
AONNE 1DIb <16 MB
ZONE NORMAL 16 .. 896 MB
ZONE HIGHMEM > 896 MB

Operating System Concepts 21.35 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

16KB

8KB

Splitting of Memory in a Buddy Heap

8KB

8KB

21.36

4KB

4KB

Managing Physical Memory

B The page allocator allocates and frees all physical pages; it can
allocate ranges of physically-contiguous pages on request

B The allocator uses a buddy-heap algorithm to keep track of available
physical pages
® Each allocatable memory region is paired with an adjacent
partner

® Whenever two allocated partner regions are both freed up they
are combined to form a larger region

® If a small memory request cannot be satisfied by allocating an
existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request

B Memory allocations in the Linux kernel occur either statically (drivers
reserve a contiguous area of memory during system boot time) or
dynamically (via the page allocator)

B Also uses slab allocator for kernel memory

Operating System Concepts 21.37 Silberschatz, Galvin and Gagne ©2005

21.07

kernel objects

caches

slabs

3 KB T~
objects
~~o physical
::: contiguous
o pages
\L _-/-7
7 KB /
objects T >
__+
/r ______
21.38

Operating System Concepts

Silberschatz, Galvin an& Gagne ©2,05

Virtual Memory

B The VM system maintains the address space visible to each
process: It creates pages of virtual memory on demand, and
manages the loading of those pages from disk or their swapping
back out to disk as required

B The VM manager maintains two separate views of a process’s
address space:

® A logical view describing instructions concerning the layout of
the address space

» The address space consists of a set of nonoverlapping
regions, each representing a continuous, page-aligned
subset of the address space

® A physical view of each address space which is stored in the
hardware page tables for the process

Operating System Concepts 21.39 Silberschatz, Galvin and Gagne ©2005

Virtual Memory (Cont.)

B Virtual memory regions are characterized by:

® The backing store, which describes from where the pages for a
region come; regions are usually backed by a file or by nothing
(demand-zero memory)

® The region’s reaction to writes (page sharing or copy-on-write)

B The kernel creates a new virtual address space
1. When a process runs a new program with the exec system call
2. Upon creation of a new process by the fork system call

Ve v "
Operating System Concepts 21.40 Silberschatz, Galvin and Gagne ©2005

Virtual Memory (Cont.)

B On executing a new program, the process is given a new,
completely empty virtual-address space; the program-loading
routines populate the address space with virtual-memory regions

B Creating a new process with fork involves creating a complete
copy of the existing process’s virtual address space

® The kernel copies the parent process’s VMA descriptors, then
creates a new set of page tables for the child

® The parent’s page tables are copied directly into the child’s,
with the reference count of each page covered being
incremented

® After the fork, the parent and child share the same physical
pages of memory in their address spaces

Operating System Concepts 21.41 Silberschatz, Galvin and Gagne ©2005

Virtual Memory (Cont.)

B The VM paging system relocates pages of memory from physical
memory out to disk when the memory is needed for something else

B The VM paging system can be divided into two sections:

® The pageout-policy algorithm decides which pages to write out
to disk, and when

® The paging mechanism actually carries out the transfer, and
pages data back into physical memory as needed

Ve v "
Operating System Concepts 21.42 Silberschatz, Galvin and Gagne ©2005

Virtual Memory (Cont.)

B The Linux kernel reserves a constant, architecture-dependent
region of the virtual address space of every process for its own
internal use

B This kernel virtual-memory area contains two regions:

® A static area that contains page table references to every
available physical page of memory in the system, so that there
Is a simple translation from physical to virtual addresses when
running kernel code

® The reminder of the reserved section is not reserved for any
specific purpose; its page-table entries can be modified to point
to any other areas of memory

. o =
Operating System Concepts 21.43 Silberschatz, Galvin and Gagne ©2005

Executing and Loading User Programs

B |inux maintains a table of functions for loading programs; it gives
each function the opportunity to try loading the given file when an
exec system call is made

B The registration of multiple loader routines allows Linux to support
both the ELF and a.out binary formats

B |nitially, binary-file pages are mapped into virtual memory

® Only when a program tries to access a given page will a page
fault result in that page being loaded into physical memory

B An ELF-format binary file consists of a header followed by several
page-aligned sections

® The ELF loader works by reading the header and mapping the
sections of the file into separate regions of virtual memory

NG
Operating System Concepts 21.44 Silberschatz, Galvin and Gagne ©2005

kernel virtual memory

Memory Layout for ELF Programs

T memory invisible to user-mode code

stack

!
1

memory-mapped region

memory-mapped region

memory-mapped region

t

the ‘brk’ pointer

run-time data

uninitialized data

initialized data

program text

Operating System Concepts

forbidden region

21.45

Static and Dynamic Linking

B A program whose necessary library functions are embedded
directly in the program’s executable binary file is statically linked to
its libraries

B The main disadvantage of static linkage is that every program
generated must contain copies of exactly the same common
system library functions

B Dynamic linking is more efficient in terms of both physical memory
and disk-space usage because it loads the system libraries into
memory only once

Ve v "
Operating System Concepts 21.46 Silberschatz, Galvin and Gagne ©2005

File Systems

B To the user, Linux’s file system appears as a hierarchical directory
tree obeying UNIX semantics

B [nternally, the kernel hides implementation details and manages the
multiple different file systems via an abstraction layer, that is, the
virtual file system (VFS)

B The Linux VFS is designed around object-oriented principles and is
composed of two components:

® A set of definitions that define what a file object is allowed to
look like

» The inode-object and the file-object structures represent
individual files

> the file system object represents an entire file system
® A layer of software to manipulate those objects

Operating System Concepts 21.47 Silberschatz, Galvin and Gagne ©2005

The Linux Ext2fs File System

B Ext2fs uses a mechanism similar to that of BSD Fast File System (ffs)
for locating data blocks belonging to a specific file

B The main differences between ext2fs and ffs concern their disk
allocation policies

® |n ffs, the disk is allocated to files in blocks of 8Kb, with blocks
being subdivided into fragments of 1Kb to store small files or
partially filled blocks at the end of a file

® Ext2fs does not use fragments; it performs its allocations in
smaller units

* The default block size on ext2fs is 1Kb, although 2Kb and 4Kb
blocks are also supported

® Ext2fs uses allocation policies designed to place logically adjacent
blocks of a file into physically adjacent blocks on disk, so that it
can submit an 1/O request for several disk blocks as a single
operation

Operating System Concepts 21.48 Silberschatz, Galvin and Gagne ©2005

Ext2fs Block-Allocation Policies

allocating scattered free blocks

V4 e e el el

allocating continuous free blocks

block in use block selected bit boundary
by allocator

free block —> bitmap search byte boundary

Operating System Concepts 21.49 Silberschatz, Galvin and Gagne ©2005

The Linux Proc File System

B The proc file system does not store data, rather, its contents are
computed on demand according to user file 1/O requests

B proc must implement a directory structure, and the file contents
within; it must then define a unique and persistent inode number for
each directory and files it contains

® |t uses this inode number to identify just what operation is
required when a user tries to read from a particular file inode or
perform a lookup in a particular directory inode

® When data is read from one of these files, proc collects the
appropriate information, formats it into text form and places it
Into the requesting process’s read buffer

/‘*»3 = >
Operating System Concepts 21.50 Silberschatz, Galvin and Gagne ©2005

Input and Output

B The Linux device-oriented file system accesses disk storage
through two caches:

® Data is cached in the page cache, which is unified with the
virtual memory system

® Metadata is cached in the buffer cache, a separate cache
indexed by the physical disk block

B Linux splits all devices into three classes:

® block devices allow random access to completely independent,
fixed size blocks of data

® character devices include most other devices; they don’t need
to support the functionality of regular files

® network devices are interfaced via the kernel's networking
subsystem

. o =
Operating System Concepts 21.51 Silberschatz, Galvin and Gagne ©2005

Device-Driver Block Structure

user application
|
file system 1 b!oct}ll character network
__________L___effu_':'_'_e___ device file socket
I/O scheduler . -
| , |
| TTY driver i | prof[ocol
_____________________ | | driver
7| ________________ |
. SCSImanager | [———-—— =
: B s e character network
c(ijermgre I SCSl device device device
| driver driver driver

Operating System Concepts 21.52

Block Devices

B Provide the main interface to all disk devices in a system

B The block buffer cache serves two main purposes:
® it acts as a pool of buffers for active I/O
® it serves as a cache for completed 1/O

B The request manager manages the reading and writing of buffer
contents to and from a block device driver

R b
Operating System Concepts 21.53 Silberschatz, Galvin and Gagne ©2005

Character Devices

B A device driver which does not offer random access to fixed blocks
of data

B A character device driver must register a set of functions which
implement the driver’s various file I/O operations

B The kernel performs almost no preprocessing of a file read or write
request to a character device, but simply passes on the request to
the device

B The main exception to this rule is the special subset of character
device drivers which implement terminal devices, for which the
kernel maintains a standard interface

. o =
Operating System Concepts 21.54 Silberschatz, Galvin and Gagne ©2005

Interprocess Communication

B |ike UNIX, Linux informs processes that an event has occurred via
signals

B There is a limited number of signals, and they cannot carry
information: Only the fact that a signal occurred is available to a

process

B The Linux kernel does not use signals to communicate with
processes with are running in kernel mode, rather, communication
within the kernel is accomplished via scheduling states and
wait.queue structures

s
i} SR
4 - W™

Operating System Concepts 21.55 Silberschatz, Galvin and Gagne ©2005

Passing Data Between Processes

B The pipe mechanism allows a child process to inherit a
communication channel to its parent, data written to one end of the
pipe can be read a the other

B Shared memory offers an extremely fast way of communicating;
any data written by one process to a shared memory region can be
read immediately by any other process that has mapped that region
into its address space

B To obtain synchronization, however, shared memory must be used
In conjunction with another Interprocess-communication
mechanism

Operating System Concepts 21.56

Shared Memory Object

B The shared-memory object acts as a backing store for shared-
memory regions in the same way as a file can act as backing store
for a memory-mapped memory region

B Shared-memory mappings direct page faults to map in pages from
a persistent shared-memory object

B Shared-memory objects remember their contents even if no
processes are currently mapping them into virtual memory

Ve v "
Operating System Concepts 21.57 Silberschatz, Galvin and Gagne ©2005

Network Structure

B Networking is a key area of functionality for Linux.

® It supports the standard Internet protocols for UNIX to UNIX
communications

® |t also implements protocols native to nonUNIX operating
systems, in particular, protocols used on PC networks, such as

Appletalk and IPX

B Internally, networking in the Linux kernel is implemented by three
layers of software:

® The socket interface
® Protocol drivers
® Network device drivers

s
i} SR
4 - W™

Operating System Concepts 21.58 Silberschatz, Galvin and Gagne ©2005

Network Structure (Cont.)

B The most important set of protocols in the Linux networking system
IS the internet protocol suite

® It implements routing between different hosts anywhere on the
network

® On top of the routing protocol are built the UDP, TCP and ICMP
protocols

3Ny
o N ;' -4 ,

Operating System Concepts 21.59 Silberschatz, Galvin and Gagne ©2005

Security

B The pluggable authentication modules (PAM) system is available
under Linux

B PAM is based on a shared library that can be used by any system
component that needs to authenticate users

B Access control under UNIX systems, including Linux, is performed
through the use of unique numeric identifiers (uid and gid)

B Access control is performed by assigning objects a protections
mask, which specifies which access modes—read, write, or
execute—are to be granted to processes with owner, group, or
world access

Operating System Concepts 21.60 Silberschatz, Galvin and Gagne ©2005

Security (Cont.)

B Linux augments the standard UNIX setuid mechanism in two ways:

® It implements the POSIX specification’s saved user-id
mechanism, which allows a process to repeatedly drop and
reacquire its effective uid

® |t has added a process characteristic that grants just a subset
of the rights of the effective uid

B Linux provides another mechanism that allows a client to selectively
pass access to a single file to some server process without granting
it any other privileges

Operating System Concepts 21.61 Silberschatz, Galvin and Gagne ©2005

End of Chapter 21
QIBBBIIGIIBDIICIBDIILIIBPIIG

