

Chapter 8: Memory ManagementChapter 8: Memory Management

8.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 8: Memory ManagementChapter 8: Memory Management

 Background

 Swapping

 Contiguous Allocation

 Paging

 Segmentation

 Segmentation with Paging

8.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BackgroundBackground

 Program must be brought into memory and placed within a process
for it to be run

 Input queue – collection of processes on the disk that are waiting
to be brought into memory to run the program

 User programs go through several steps before being run

8.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Binding of Instructions and Data to MemoryBinding of Instructions and Data to Memory

 Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting location
changes

 Load time: Must generate relocatable code if memory location
is not known at compile time

 Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment to
another. Need hardware support for address maps (e.g., base
and limit registers).

Address binding of instructions and data to memory addresses can
happen at three different stages

8.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multistep Processing of a User Program Multistep Processing of a User Program

8.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Logical vs. Physical Address SpaceLogical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management

 Logical address – generated by the CPU; also referred to as
virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time and
load-time address-binding schemes; logical (virtual) and physical
addresses differ in execution-time address-binding scheme

8.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory-Management Unit (Memory-Management Unit (MMUMMU))

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent to
memory

 The user program deals with logical addresses; it never sees the
real physical addresses

8.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic relocation using a relocation registerDynamic relocation using a relocation register

8.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic LoadingDynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 Useful when large amounts of code are needed to handle
infrequently occurring cases

 No special support from the operating system is required
implemented through program design

8.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic LinkingDynamic Linking

 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate
memory-resident library routine

 Stub replaces itself with the address of the routine, and
executes the routine

 Operating system needed to check if routine is in processes’
memory address

 Dynamic linking is particularly useful for libraries

8.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SwappingSwapping

 A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution

 Backing store – fast disk large enough to accommodate copies of
all memory images for all users; must provide direct access to
these memory images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

 Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows)

8.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of SwappingSchematic View of Swapping

8.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous AllocationContiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with
interrupt vector

 User processes then held in high memory

 Single-partition allocation

 Relocation-register scheme used to protect user processes
from each other, and from changing operating-system code and
data

 Relocation register contains value of smallest physical address;
limit register contains range of logical addresses – each logical
address must be less than the limit register

8.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A base and a limit register define a logical address spaceA base and a limit register define a logical address space

8.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

HW address protection with base and limit registersHW address protection with base and limit registers

8.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation (Cont.)Contiguous Allocation (Cont.)

 Multiple-partition allocation

 Hole – block of available memory; holes of various size are
scattered throughout memory

 When a process arrives, it is allocated memory from a hole
large enough to accommodate it

 Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

8.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic Storage-Allocation ProblemDynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces
the smallest leftover hole.

 Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

8.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FragmentationFragmentation

 External Fragmentation – total memory space exists to satisfy a
request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used

 Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together in

one large block

 Compaction is possible only if relocation is dynamic, and is
done at execution time

 I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

8.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

PagingPaging

 Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

 Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes)

 Divide logical memory into blocks of same size called pages.

 Keep track of all free frames

 To run a program of size n pages, need to find n free frames and
load program

 Set up a page table to translate logical to physical addresses

 Internal fragmentation

8.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation SchemeAddress Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

 Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit

8.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation ArchitectureAddress Translation Architecture

8.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Example Paging Example

8.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging ExamplePaging Example

8.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free FramesFree Frames

Before allocation After allocation

8.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Implementation of Page TableImplementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PRLR) indicates size of the page
table

 In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

 The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

8.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Associative MemoryAssociative Memory

 Associative memory – parallel search

Address translation (A´, A´´)

 If A´ is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Page # Frame #

8.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Hardware With TLBPaging Hardware With TLB

8.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Effective Access TimeEffective Access Time

 Associative Lookup = ε time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is found
in the associative registers; ration related to number of
associative registers

 Hit ratio = α
 Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)

= 2 + ε – α

8.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory ProtectionMemory Protection

 Memory protection implemented by associating protection bit
with each frame

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

8.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page TableValid (v) or Invalid (i) Bit In A Page Table

8.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Table StructurePage Table Structure

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

8.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hierarchical Page TablesHierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

8.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Two-Level Paging ExampleTwo-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided into:
 a page number consisting of 20 bits
 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided into:
 a 10-bit page number
 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement
within the page of the outer page table

page number page offset

pi p2 d

10 10 12

8.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Two-Level Page-Table SchemeTwo-Level Page-Table Scheme

8.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address-Translation SchemeAddress-Translation Scheme

 Address-translation scheme for a two-level 32-bit paging
architecture

8.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hashed Page TablesHashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table. This page
table contains a chain of elements hashing to the same location.

 Virtual page numbers are compared in this chain searching for a
match. If a match is found, the corresponding physical frame is
extracted.

8.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hashed Page TableHashed Page Table

8.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Inverted Page TableInverted Page Table

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

 Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

 Use hash table to limit the search to one — or at most a
few — page-table entries

8.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Inverted Page Table ArchitectureInverted Page Table Architecture

8.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared PagesShared Pages

 Shared code
 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical
address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear
anywhere in the logical address space

8.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared Pages ExampleShared Pages Example

8.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SegmentationSegmentation

 Memory-management scheme that supports user view of memory
 A program is a collection of segments. A segment is a logical unit

such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

8.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

User’s View of a ProgramUser’s View of a Program

8.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Logical View of SegmentationLogical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses;
each table entry has:

 base – contains the starting physical address where the
segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment
table’s location in memory

 Segment-table length register (STLR) indicates number of
segments used by a program;

 segment number s is legal if s < STLR

8.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture (Cont.)Segmentation Architecture (Cont.)

 Relocation.

 dynamic

 by segment table

 Sharing.

 shared segments

 same segment number

 Allocation.

 first fit/best fit

 external fragmentation

8.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture (Cont.)Segmentation Architecture (Cont.)

 Protection. With each entry in segment table associate:

 validation bit = 0 ⇒ illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing
occurs at segment level

 Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

8.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation Architecture Address Translation Architecture

8.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of SegmentationExample of Segmentation

8.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Sharing of SegmentsSharing of Segments

8.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation with Paging – MULTICSSegmentation with Paging – MULTICS

 The MULTICS system solved problems of external
fragmentation and lengthy search times by paging the
segments

 Solution differs from pure segmentation in that the
segment-table entry contains not the base address of
the segment, but rather the base address of a page
table for this segment

8.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MULTICS Address Translation SchemeMULTICS Address Translation Scheme

8.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation with Paging – Intel 386Segmentation with Paging – Intel 386

 As shown in the following diagram, the Intel 386 uses
segmentation with paging for memory management with a
two-level paging scheme

8.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Intel 30386 Address TranslationIntel 30386 Address Translation

8.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linux on Intel 80x86Linux on Intel 80x86

 Uses minimal segmentation to keep memory management
implementation more portable

 Uses 6 segments:
 Kernel code
 Kernel data
 User code (shared by all user processes, using logical

addresses)
 User data (likewise shared)
 Task-state (per-process hardware context)
 LDT

 Uses 2 protection levels:
 Kernel mode
 User mode

End of Chapter 8End of Chapter 8

