

Chapter 18: Distributed CoordinationChapter 18: Distributed Coordination

18.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 18 Distributed CoordinationChapter 18 Distributed Coordination

 Event Ordering

 Mutual Exclusion

 Atomicity

 Concurrency Control

 Deadlock Handling

 Election Algorithms

 Reaching Agreement

18.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter ObjectivesChapter Objectives

 To describe various methods for achieving mutual exclusion in
a distributed system

 To explain how atomic transactions can be implemented in a
distributed system

 To show how some of the concurrency-control schemes
discussed in Chapter 6 can be modified for use in a distributed
environment

 To present schemes for handling deadlock prevention,
deadlock avoidance, and deadlock detection in a distributed
system

18.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Event OrderingEvent Ordering

 Happened-before relation (denoted by →)

 If A and B are events in the same process, and A was executed
before B, then A → B

 If A is the event of sending a message by one process and B is
the event of receiving that message by another process, then A
→ B

 If A → B and B → C then A → C

18.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Relative Time for Three Concurrent ProcessesRelative Time for Three Concurrent Processes

18.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Implementation of Implementation of →→

 Associate a timestamp with each system event

 Require that for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B

 Within each process Pi a logical clock, LCi is associated

 The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a
process

 Logical clock is monotonically increasing

 A process advances its logical clock when it receives a message whose
timestamp is greater than the current value of its logical clock

 If the timestamps of two events A and B are the same, then the events
are concurrent

 We may use the process identity numbers to break ties and to
create a total ordering

18.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Distributed Mutual Exclusion (DME) Distributed Mutual Exclusion (DME)

 Assumptions

 The system consists of n processes; each process Pi resides
at a different processor

 Each process has a critical section that requires mutual
exclusion

 Requirement

 If Pi is executing in its critical section, then no other process Pj
is executing in its critical section

 We present two algorithms to ensure the mutual exclusion
execution of processes in their critical sections

18.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DME: Centralized ApproachDME: Centralized Approach

 One of the processes in the system is chosen to coordinate the entry
to the critical section

 A process that wants to enter its critical section sends a request
message to the coordinator

 The coordinator decides which process can enter the critical section
next, and its sends that process a reply message

 When the process receives a reply message from the coordinator, it
enters its critical section

 After exiting its critical section, the process sends a release message
to the coordinator and proceeds with its execution

 This scheme requires three messages per critical-section entry:

 request

 reply

 release

18.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DME: Fully Distributed ApproachDME: Fully Distributed Approach

 When process Pi wants to enter its critical section, it generates a
new timestamp, TS, and sends the message request (Pi, TS) to all
other processes in the system

 When process Pj receives a request message, it may reply
immediately or it may defer sending a reply back

 When process Pi receives a reply message from all other processes
in the system, it can enter its critical section

 After exiting its critical section, the process sends reply messages
to all its deferred requests

18.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DME: Fully Distributed Approach (Cont.)DME: Fully Distributed Approach (Cont.)

 The decision whether process Pj replies immediately to a
request(Pi, TS) message or defers its reply is based on three
factors:

 If Pj is in its critical section, then it defers its reply to Pi

 If Pj does not want to enter its critical section, then it sends a
reply immediately to Pi

 If Pj wants to enter its critical section but has not yet entered it,
then it compares its own request timestamp with the timestamp
TS

 If its own request timestamp is greater than TS, then it
sends a reply immediately to Pi (Pi asked first)

 Otherwise, the reply is deferred

18.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Desirable Behavior of Fully Distributed ApproachDesirable Behavior of Fully Distributed Approach

 Freedom from Deadlock is ensured

 Freedom from starvation is ensured, since entry to the critical
section is scheduled according to the timestamp ordering

 The timestamp ordering ensures that processes are served in a
first-come, first served order

 The number of messages per critical-section entry is

2 x (n – 1)

This is the minimum number of required messages per critical-
section entry when processes act independently and concurrently

18.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Three Undesirable ConsequencesThree Undesirable Consequences

 The processes need to know the identity of all other processes in
the system, which makes the dynamic addition and removal of
processes more complex

 If one of the processes fails, then the entire scheme collapses

 This can be dealt with by continuously monitoring the state of
all the processes in the system

 Processes that have not entered their critical section must pause
frequently to assure other processes that they intend to enter the
critical section

 This protocol is therefore suited for small, stable sets of
cooperating processes

18.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Token-Passing ApproachToken-Passing Approach

 Circulate a token among processes in system

 Token is special type of message

 Possession of token entitles holder to enter critical section

 Processes logically organized in a ring structure

 Algorithm similar to Chapter 6 algorithm 1 but token substituted for
shared variable

 Unidirectional ring guarantees freedom from starvation

 Two types of failures

 Lost token – election must be called

 Failed processes – new logical ring established

18.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Atomicity Atomicity

 Either all the operations associated with a program unit are
executed to completion, or none are performed

 Ensuring atomicity in a distributed system requires a transaction
coordinator, which is responsible for the following:

 Starting the execution of the transaction

 Breaking the transaction into a number of subtransactions, and
distribution these subtransactions to the appropriate sites for
execution

 Coordinating the termination of the transaction, which may
result in the transaction being committed at all sites or aborted
at all sites

18.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Two-Phase Commit Protocol (2PC)Two-Phase Commit Protocol (2PC)

 Assumes fail-stop model

 Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached

 When the protocol is initiated, the transaction may still be executing
at some of the local sites

 The protocol involves all the local sites at which the transaction
executed

 Example: Let T be a transaction initiated at site Si and let the
transaction coordinator at Si be Ci

18.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Phase 1: Obtaining a DecisionPhase 1: Obtaining a Decision

 Ci adds <prepare T> record to the log

 Ci sends <prepare T> message to all sites

 When a site receives a <prepare T> message, the transaction
manager determines if it can commit the transaction

 If no: add <no T> record to the log and respond to Ci with
<abort T>

 If yes:

 add <ready T> record to the log

 force all log records for T onto stable storage

 transaction manager sends <ready T> message to Ci

18.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Phase 1 (Cont.)Phase 1 (Cont.)

 Coordinator collects responses

 All respond “ready”,
decision is commit

 At least one response is “abort”,
decision is abort

 At least one participant fails to respond within time out period,
decision is abort

18.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Phase 2: Recording Decision in the DatabasePhase 2: Recording Decision in the Database

 Coordinator adds a decision record

<abort T> or <commit T>

to its log and forces record onto stable storage

 Once that record reaches stable storage it is irrevocable (even if
failures occur)

 Coordinator sends a message to each participant informing it of the
decision (commit or abort)

 Participants take appropriate action locally

18.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Failure Handling in 2PC – Site FailureFailure Handling in 2PC – Site Failure

 The log contains a <commit T> record

 In this case, the site executes redo(T)

 The log contains an <abort T> record

 In this case, the site executes undo(T)

 The contains a <ready T> record; consult Ci

 If Ci is down, site sends query-status T message to the other
sites

 The log contains no control records concerning T

 In this case, the site executes undo(T)

18.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Failure Handling in 2PC – Coordinator Failure Handling in 2PC – Coordinator CCii FailureFailure

 If an active site contains a <commit T> record in its log, the T must
be committed

 If an active site contains an <abort T> record in its log, then T must
be aborted

 If some active site does not contain the record <ready T> in its log
then the failed coordinator Ci cannot have decided to
commit T

 Rather than wait for Ci to recover, it is preferable to abort T

 All active sites have a <ready T> record in their logs, but no
additional control records

 In this case we must wait for the coordinator to recover

 Blocking problem – T is blocked pending the recovery of site Si

18.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Concurrency ControlConcurrency Control

 Modify the centralized concurrency schemes to accommodate the
distribution of transactions

 Transaction manager coordinates execution of transactions (or
subtransactions) that access data at local sites

 Local transaction only executes at that site

 Global transaction executes at several sites

18.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Locking ProtocolsLocking Protocols

 Can use the two-phase locking protocol in a distributed
environment by changing how the lock manager is implemented

 Nonreplicated scheme – each site maintains a local lock manager
which administers lock and unlock requests for those data items
that are stored in that site

 Simple implementation involves two message transfers for
handling lock requests, and one message transfer for handling
unlock requests

 Deadlock handling is more complex

18.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Single-Coordinator ApproachSingle-Coordinator Approach

 A single lock manager resides in a single chosen site, all lock and
unlock requests are made a that site

 Simple implementation

 Simple deadlock handling

 Possibility of bottleneck

 Vulnerable to loss of concurrency controller if single site fails

 Multiple-coordinator approach distributes lock-manager function
over several sites

18.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Majority ProtocolMajority Protocol

 Avoids drawbacks of central control by dealing with replicated data
in a decentralized manner

 More complicated to implement

 Deadlock-handling algorithms must be modified; possible for
deadlock to occur in locking only one data item

18.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Biased ProtocolBiased Protocol

 Similar to majority protocol, but requests for shared locks prioritized
over requests for exclusive locks

 Less overhead on read operations than in majority protocol; but has
additional overhead on writes

 Like majority protocol, deadlock handling is complex

18.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Primary CopyPrimary Copy

 One of the sites at which a replica resides is designated as the
primary site

 Request to lock a data item is made at the primary site of that
data item

 Concurrency control for replicated data handled in a manner similar
to that of unreplicated data

 Simple implementation, but if primary site fails, the data item is
unavailable, even though other sites may have a replica

18.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TimestampingTimestamping

 Generate unique timestamps in distributed scheme:

 Each site generates a unique local timestamp

 The global unique timestamp is obtained by concatenation of
the unique local timestamp with the unique site identifier

 Use a logical clock defined within each site to ensure the fair
generation of timestamps

 Timestamp-ordering scheme – combine the centralized
concurrency control timestamp scheme with the 2PC protocol to
obtain a protocol that ensures serializability with no cascading
rollbacks

18.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Generation of Unique TimestampsGeneration of Unique Timestamps

18.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock PreventionDeadlock Prevention

 Resource-ordering deadlock-prevention – define a global ordering
among the system resources

 Assign a unique number to all system resources

 A process may request a resource with unique number i only if
it is not holding a resource with a unique number grater than i

 Simple to implement; requires little overhead

 Banker’s algorithm – designate one of the processes in the system
as the process that maintains the information necessary to carry
out the Banker’s algorithm

 Also implemented easily, but may require too much overhead

18.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Timestamped Deadlock-Prevention SchemeTimestamped Deadlock-Prevention Scheme

 Each process Pi is assigned a unique priority number

 Priority numbers are used to decide whether a process Pi should
wait for a process Pj; otherwise Pi is rolled back

 The scheme prevents deadlocks

 For every edge Pi → Pj in the wait-for graph, Pi has a higher
priority than Pj

 Thus a cycle cannot exist

18.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Wait-Die SchemeWait-Die Scheme

 Based on a nonpreemptive technique

 If Pi requests a resource currently held by Pj, Pi is allowed to wait
only if it has a smaller timestamp than does Pj (Pi is older than Pj)

 Otherwise, Pi is rolled back (dies)

 Example: Suppose that processes P1, P2, and P3 have
timestamps t, 10, and 15 respectively

 if P1 request a resource held by P2, then P1 will wait

 If P3 requests a resource held by P2, then P3 will be rolled
back

18.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Would-Wait SchemeWould-Wait Scheme

 Based on a preemptive technique; counterpart to the wait-die
system

 If Pi requests a resource currently held by Pj, Pi is allowed to wait
only if it has a larger timestamp than does Pj (Pi is younger than Pj).
 Otherwise Pj is rolled back (Pj is wounded by Pi)

 Example: Suppose that processes P1, P2, and P3 have timestamps
5, 10, and 15 respectively

 If P1 requests a resource held by P2, then the resource will be
preempted from P2 and P2 will be rolled back

 If P3 requests a resource held by P2, then P3 will wait

18.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Two Local Wait-For GraphsTwo Local Wait-For Graphs

18.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Global Wait-For GraphGlobal Wait-For Graph

18.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock Detection – Centralized ApproachDeadlock Detection – Centralized Approach

 Each site keeps a local wait-for graph

 The nodes of the graph correspond to all the processes that are
currently either holding or requesting any of the resources local to
that site

 A global wait-for graph is maintained in a single coordination process;
this graph is the union of all local wait-for graphs

 There are three different options (points in time) when the wait-for graph
may be constructed:

1. Whenever a new edge is inserted or removed in one of the local wait-for
graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

 Unnecessary rollbacks may occur as a result of false cycles

18.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Detection Algorithm Based on Option Detection Algorithm Based on Option
33

 Append unique identifiers (timestamps) to requests form different
sites

 When process Pi, at site A, requests a resource from process Pj, at
site B, a request message with timestamp TS is sent

 The edge Pi → Pj with the label TS is inserted in the local wait-for of
A. The edge is inserted in the local wait-for graph of B only if B has
received the request message and cannot immediately grant the
requested resource

18.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Algorithm The Algorithm

1. The controller sends an initiating message to each site in the
system

2. On receiving this message, a site sends its local wait-for graph to
the coordinator

3. When the controller has received a reply from each site, it
constructs a graph as follows:

(a) The constructed graph contains a vertex for every process in
the system

(b) The graph has an edge Pi → Pj if and only if

(1) there is an edge Pi → Pj in one of the wait-for graphs, or

(2) an edge Pi → Pj with some label TS appears in more
than one wait-for graph

If the constructed graph contains a cycle ⇒ deadlock

18.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Local and Global Wait-For GraphsLocal and Global Wait-For Graphs

18.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Fully Distributed ApproachFully Distributed Approach

 All controllers share equally the responsibility for detecting
deadlock

 Every site constructs a wait-for graph that represents a part of the
total graph

 We add one additional node Pex to each local wait-for graph

 If a local wait-for graph contains a cycle that does not involve node
Pex, then the system is in a deadlock state

 A cycle involving Pex implies the possibility of a deadlock

 To ascertain whether a deadlock does exist, a distributed
deadlock-detection algorithm must be invoked

18.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Augmented Local Wait-For Graphs Augmented Local Wait-For Graphs

18.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Augmented Local Wait-For Graph in Site S2Augmented Local Wait-For Graph in Site S2

18.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Election AlgorithmsElection Algorithms

 Determine where a new copy of the coordinator should be restarted

 Assume that a unique priority number is associated with each
active process in the system, and assume that the priority number
of process Pi is i

 Assume a one-to-one correspondence between processes and
sites

 The coordinator is always the process with the largest priority
number. When a coordinator fails, the algorithm must elect that
active process with the largest priority number

 Two algorithms, the bully algorithm and a ring algorithm, can be
used to elect a new coordinator in case of failures

18.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bully AlgorithmBully Algorithm

 Applicable to systems where every process can send a message to
every other process in the system

 If process Pi sends a request that is not answered by the
coordinator within a time interval T, assume that the coordinator
has failed; Pi tries to elect itself as the new coordinator

 Pi sends an election message to every process with a higher
priority number, Pi then waits for any of these processes to answer
within T

18.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bully Algorithm (Cont.)Bully Algorithm (Cont.)

 If no response within T, assume that all processes with numbers
greater than i have failed; Pi elects itself the new coordinator

 If answer is received, Pi begins time interval T´, waiting to receive a
message that a process with a higher priority number has been
elected

 If no message is sent within T´, assume the process with a higher
number has failed; Pi should restart the algorithm

18.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bully Algorithm (Cont.)Bully Algorithm (Cont.)

 If Pi is not the coordinator, then, at any time during execution, Pi

may receive one of the following two messages from process Pj

 Pj is the new coordinator (j > i). Pi, in turn, records this
information

 Pj started an election (j > i). Pi, sends a response to Pj and
begins its own election algorithm, provided that Pi has not
already initiated such an election

 After a failed process recovers, it immediately begins execution of
the same algorithm

 If there are no active processes with higher numbers, the recovered
process forces all processes with lower number to let it become the
coordinator process, even if there is a currently active coordinator
with a lower number

18.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Ring AlgorithmRing Algorithm

 Applicable to systems organized as a ring (logically or physically)

 Assumes that the links are unidirectional, and that processes send
their messages to their right neighbors

 Each process maintains an active list, consisting of all the priority
numbers of all active processes in the system when the algorithm
ends

 If process Pi detects a coordinator failure, I creates a new active list
that is initially empty. It then sends a message elect(i) to its right
neighbor, and adds the number i to its active list

18.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Ring Algorithm (Cont.)Ring Algorithm (Cont.)

 If Pi receives a message elect(j) from the process on the left, it must
respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi creates a new
active list with the numbers i and j

 It then sends the message elect(i), followed by the message
elect(j)

2. If i ≠ j, then the active list for Pi now contains the numbers of all the
active processes in the system

 Pi can now determine the largest number in the active list to
identify the new coordinator process

3. If i = j, then Pi receives the message elect(i)

 The active list for Pi contains all the active processes in the
system

 Pi can now determine the new coordinator process.

18.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Reaching AgreementReaching Agreement

 There are applications where a set of processes wish to agree on a
common “value”

 Such agreement may not take place due to:

 Faulty communication medium

 Faulty processes

 Processes may send garbled or incorrect messages to other
processes

 A subset of the processes may collaborate with each other
in an attempt to defeat the scheme

18.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Faulty CommunicationsFaulty Communications

 Process Pi at site A, has sent a message to process Pj at site B; to
proceed, Pi needs to know if Pj has received the message

 Detect failures using a time-out scheme
 When Pi sends out a message, it also specifies a time interval

during which it is willing to wait for an acknowledgment
message form Pj

 When Pj receives the message, it immediately sends an
acknowledgment to Pi

 If Pi receives the acknowledgment message within the specified
time interval, it concludes that Pj has received its message

 If a time-out occurs, Pj needs to retransmit its message and
wait for an acknowledgment

 Continue until Pi either receives an acknowledgment, or is
notified by the system that B is down

18.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Faulty Communications (Cont.)Faulty Communications (Cont.)

 Suppose that Pj also needs to know that Pi has received its
acknowledgment message, in order to decide on how to proceed

 In the presence of failure, it is not possible to accomplish this
task

 It is not possible in a distributed environment for processes Pi
and Pj to agree completely on their respective states

18.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Faulty Processes (Byzantine Generals Problem)Faulty Processes (Byzantine Generals Problem)

 Communication medium is reliable, but processes can fail in
unpredictable ways

 Consider a system of n processes, of which no more than m are
faulty

 Suppose that each process Pi has some private value of Vi

 Devise an algorithm that allows each nonfaulty Pi to construct a
vector Xi = (Ai,1, Ai,2, …, Ai,n) such that::

 If Pj is a nonfaulty process, then Aij = Vj.

 If Pi and Pj are both nonfaulty processes, then Xi = Xj.

 Solutions share the following properties

 A correct algorithm can be devised only if n ≥ 3 x m + 1

 The worst-case delay for reaching agreement is
proportionate to m + 1 message-passing delays

18.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Faulty Processes (Cont.)Faulty Processes (Cont.)

 An algorithm for the case where m = 1 and n = 4 requires two rounds
of information exchange:

 Each process sends its private value to the other 3 processes

 Each process sends the information it has obtained in the first
round to all other processes

 If a faulty process refuses to send messages, a nonfaulty process can
choose an arbitrary value and pretend that that value was sent by that
process

 After the two rounds are completed, a nonfaulty process Pi can
construct its vector Xi = (Ai,1, Ai,2, Ai,3, Ai,4) as follows:

 Ai,j = Vi

 For j ≠ i, if at least two of the three values reported for process Pj
agree, then the majority value is used to set the value of Aij

 Otherwise, a default value (nil) is used

End of Chapter 18End of Chapter 18

