
  

Chapter 18:  Distributed CoordinationChapter 18:  Distributed Coordination



18.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 18  Distributed CoordinationChapter 18  Distributed Coordination

 Event Ordering

 Mutual Exclusion 

 Atomicity

 Concurrency Control

 Deadlock Handling

 Election Algorithms

 Reaching Agreement
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Chapter ObjectivesChapter Objectives

 To describe various methods for achieving mutual exclusion in 
a distributed system

 To explain how atomic transactions can be implemented in a 
distributed system

 To show how some of the concurrency-control schemes 
discussed in Chapter 6 can be modified for use in a distributed 
environment

 To present schemes for handling deadlock prevention, 
deadlock avoidance, and deadlock detection in a distributed 
system
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Event OrderingEvent Ordering

 Happened-before relation (denoted by →)

 If A and B are events in the same process, and A was executed 
before B, then A → B

 If A is the event of sending a message by one process and B is 
the event of receiving that message by another process, then A 
→ B

 If A → B and B → C then A → C
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Relative Time for Three Concurrent ProcessesRelative Time for Three Concurrent Processes
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Implementation of Implementation of →→  

 Associate a timestamp with each system event

 Require that for every pair of events A and B, if A → B, then the 
timestamp of A is less than the timestamp of B

 Within each process Pi a logical clock, LCi is associated

 The logical clock can be implemented as a simple counter that is 
incremented between any two successive events executed within a 
process 

 Logical clock is monotonically increasing

 A process advances its logical clock when it receives a message whose 
timestamp is greater than the current value of its logical clock

 If the timestamps of two events A and B are the same, then the events 
are concurrent

 We may use the process identity numbers to break ties and to 
create a total ordering
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Distributed Mutual Exclusion (DME) Distributed Mutual Exclusion (DME) 

 Assumptions

 The system consists of  n processes; each process Pi resides 
at a different processor

 Each process has a critical section that requires mutual 
exclusion

 Requirement

 If Pi is executing in its critical section, then no other process Pj 
is executing in its critical section

 We present two algorithms to ensure the mutual exclusion 
execution of processes in their critical sections 
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DME:  Centralized ApproachDME:  Centralized Approach

 One of the processes in the system is chosen to coordinate the entry 
to the critical section

 A process that wants to enter its critical section sends a request 
message to the coordinator

 The coordinator decides which process can enter the critical section 
next, and its sends that process a reply message

 When the process receives a reply message from the coordinator, it 
enters its critical section

 After exiting its critical section, the process sends a release message 
to the coordinator and proceeds with its execution 

 This scheme requires three messages per critical-section entry:

 request 

 reply

 release
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DME:  Fully Distributed ApproachDME:  Fully Distributed Approach

 When process Pi wants to enter its critical section, it generates a 
new timestamp, TS, and sends the message request (Pi, TS) to all 
other processes in the system

 When process Pj receives a request message, it may reply 
immediately or it may defer sending a reply back

 When process Pi receives a reply message from all other processes 
in the system, it can enter its critical section

 After exiting its critical section, the process sends reply messages 
to all its deferred requests
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DME:  Fully Distributed Approach (Cont.)DME:  Fully Distributed Approach (Cont.)

 The decision whether process Pj replies immediately to a 
request(Pi, TS) message or defers its reply is based on three 
factors:

 If Pj is in its critical section, then it defers its reply to Pi

 If Pj does not want to enter its critical section, then it sends a 
reply immediately to Pi

 If Pj wants to enter its critical section but has not yet entered it, 
then it compares its own request timestamp with the timestamp 
TS

 If its own request timestamp is greater than TS, then it 
sends a reply immediately to Pi (Pi asked first)

 Otherwise, the reply is deferred
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Desirable Behavior of Fully Distributed ApproachDesirable Behavior of Fully Distributed Approach

 Freedom from Deadlock is ensured

 Freedom from starvation is ensured, since entry to the critical 
section is scheduled according to the timestamp ordering

 The timestamp ordering ensures that processes are served in a 
first-come, first served order 

 The number of messages per critical-section entry is 

2 x (n  – 1)

This is the minimum number of required messages per critical-
section entry when processes act independently and concurrently 
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Three Undesirable ConsequencesThree Undesirable Consequences

 The processes need to know the identity of all other processes in 
the system, which makes the dynamic addition and removal of 
processes more complex

 If one of the processes fails, then the entire scheme collapses

 This can be dealt with by continuously monitoring the state of 
all the processes in the system

 Processes that have not entered their critical section must pause 
frequently to assure other processes that they intend to enter the 
critical section

 This protocol is therefore suited for small, stable sets of 
cooperating processes
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Token-Passing ApproachToken-Passing Approach

 Circulate a token among processes in system

 Token is special type of message

 Possession of token entitles holder to enter critical section

 Processes logically organized in a ring structure

 Algorithm similar to Chapter 6 algorithm 1 but token substituted for 
shared variable

 Unidirectional ring guarantees freedom from starvation

 Two types of failures

 Lost token – election must be called

 Failed processes – new logical ring established
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Atomicity Atomicity 

 Either all the operations associated with a program unit are 
executed to completion, or none are performed

 Ensuring atomicity in a distributed system requires a transaction 
coordinator, which is responsible for the following:

 Starting the execution of the transaction

 Breaking the transaction into a number of subtransactions, and 
distribution these subtransactions to the appropriate sites for 
execution

 Coordinating the termination of the transaction, which may 
result in the transaction being committed at all sites or aborted 
at all sites 
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Two-Phase Commit Protocol (2PC)Two-Phase Commit Protocol (2PC)

 Assumes fail-stop model

 Execution of the protocol is initiated by the coordinator after the last 
step of the transaction has been reached

 When the protocol is initiated, the transaction may still be executing 
at some of the local sites

 The protocol involves all the local sites at which the transaction 
executed

 Example:  Let T be a transaction initiated at site Si and let the 
transaction coordinator at Si be Ci
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Phase 1:  Obtaining a DecisionPhase 1:  Obtaining a Decision

 Ci adds <prepare T> record to the log 

 Ci sends <prepare T> message to all sites

 When a site receives a <prepare T> message, the transaction 
manager determines if it can commit the transaction

 If no:  add <no T> record to the log and respond to Ci with 
<abort T>

 If yes:

 add <ready T> record to the log

 force all log records for T onto stable storage

 transaction manager sends <ready T> message to Ci
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Phase 1 (Cont.)Phase 1 (Cont.)

 Coordinator collects responses

 All respond “ready”, 
decision is commit

 At least one response is “abort”,
decision is abort

 At least one participant fails to respond within time out period,
decision is abort 
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Phase 2:  Recording Decision in the DatabasePhase 2:  Recording Decision in the Database

 Coordinator adds a decision record 

<abort T> or <commit T>

to its log and forces record onto stable storage

 Once that record reaches stable storage it is irrevocable (even if 
failures occur)

 Coordinator sends a message to each participant informing it of the 
decision (commit or abort)

 Participants take appropriate action locally
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Failure Handling in 2PC – Site FailureFailure Handling in 2PC – Site Failure

 The log contains a <commit T> record

 In this case, the site executes redo(T)

 The log contains an <abort T> record

 In this case, the site executes undo(T)

 The contains a <ready T> record; consult Ci

 If Ci is down, site sends query-status T message to the other 
sites

 The log contains no control records concerning T

 In this case, the site executes undo(T)
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Failure Handling in 2PC – Coordinator Failure Handling in 2PC – Coordinator CCii  FailureFailure

 If an active site contains a <commit T> record in its log, the T must 
be committed

 If an active site contains an <abort T> record in its log, then T must 
be aborted

 If some active site does not contain the record <ready T> in its log 
then the failed coordinator Ci cannot have decided to 
commit T

 Rather than wait for Ci to recover, it is preferable to abort T

 All active sites have a <ready T> record in their logs, but no 
additional control records

 In this case we must wait for the coordinator to recover

 Blocking problem  – T is blocked pending the recovery of site Si
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Concurrency ControlConcurrency Control

 Modify the centralized concurrency schemes to accommodate the 
distribution of transactions

 Transaction manager coordinates execution of transactions (or 
subtransactions) that access data at local sites 

 Local transaction only executes at that site 

 Global transaction executes at several sites 
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Locking ProtocolsLocking Protocols

 Can use the two-phase locking protocol in a distributed 
environment by changing how the lock manager is implemented

 Nonreplicated scheme – each site maintains a local lock manager 
which administers lock and unlock requests for those data items 
that are stored in that site

 Simple implementation involves two message transfers for 
handling lock requests, and one message transfer for handling 
unlock requests

 Deadlock handling is more complex
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Single-Coordinator ApproachSingle-Coordinator Approach

 A single lock manager resides in a single chosen site, all lock and 
unlock requests are made a that site

 Simple implementation

 Simple deadlock handling

 Possibility of bottleneck

 Vulnerable to loss of concurrency controller if single site fails 

 Multiple-coordinator approach distributes lock-manager function 
over several sites 
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Majority ProtocolMajority Protocol

 Avoids drawbacks of central control by dealing with replicated data 
in a decentralized manner

 More complicated to implement 

 Deadlock-handling algorithms must be modified; possible for 
deadlock to occur in locking only one data item



18.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Biased ProtocolBiased Protocol

 Similar to majority protocol, but requests for shared locks prioritized 
over requests for exclusive locks

 Less overhead on read operations than in majority protocol; but has 
additional overhead on writes 

 Like majority protocol, deadlock handling is complex
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Primary CopyPrimary Copy

 One of the sites at which a replica resides is designated as the 
primary site  

 Request to lock a data item is made at the primary site of that 
data item

 Concurrency control for replicated data handled in a manner similar 
to that of unreplicated data 

 Simple implementation, but if primary site fails, the data item is 
unavailable, even though other sites may have a replica
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TimestampingTimestamping

 Generate unique timestamps in distributed scheme:

 Each site generates a unique local timestamp

 The global unique timestamp is obtained by concatenation of 
the unique local timestamp with the unique site identifier

 Use a logical clock defined within each site to ensure the fair 
generation of timestamps

 Timestamp-ordering scheme – combine the centralized 
concurrency control timestamp scheme with the 2PC protocol to 
obtain a protocol that ensures serializability with no cascading 
rollbacks
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Generation of Unique TimestampsGeneration of Unique Timestamps
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Deadlock PreventionDeadlock Prevention

 Resource-ordering deadlock-prevention – define a global ordering 
among the system resources

 Assign a unique number to all system resources

 A process may request a resource with unique number i only if 
it is not holding a resource with a unique number grater than i

 Simple to implement; requires little overhead

 Banker’s algorithm – designate one of the processes in the system 
as the process that maintains the information necessary to carry 
out the Banker’s algorithm

 Also implemented easily, but may require too much overhead



18.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Timestamped Deadlock-Prevention SchemeTimestamped Deadlock-Prevention Scheme

 Each process Pi is assigned a unique priority number 

 Priority numbers are used to decide whether a process Pi should 
wait for a process Pj; otherwise Pi is rolled back

 The scheme prevents deadlocks 

 For every edge Pi → Pj in the wait-for graph, Pi has a higher 
priority than Pj

 Thus a cycle cannot exist
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Wait-Die SchemeWait-Die Scheme

 Based on a nonpreemptive technique

 If Pi requests a resource currently held by Pj, Pi is allowed to wait 
only if it has a smaller timestamp than does Pj (Pi is older than Pj)

 Otherwise, Pi is rolled back (dies)

 Example:  Suppose that processes P1, P2, and P3 have 
timestamps t, 10, and 15 respectively

 if P1 request a resource held by P2, then P1 will wait

 If P3 requests a resource held by P2, then P3 will be rolled 
back
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Would-Wait SchemeWould-Wait Scheme

 Based on a preemptive technique; counterpart to the wait-die 
system

 If Pi requests a resource currently held by Pj, Pi is allowed to wait 
only if it has a larger timestamp than does Pj (Pi is younger than Pj). 
 Otherwise Pj is rolled back (Pj is wounded by Pi)

 Example:  Suppose that processes P1, P2, and P3 have timestamps 
5, 10, and 15 respectively

 If P1 requests a resource held by P2, then the resource will be 
preempted from P2 and P2 will be rolled back

 If P3 requests a resource held by P2, then P3 will wait
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Two Local Wait-For GraphsTwo Local Wait-For Graphs
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Global Wait-For GraphGlobal Wait-For Graph
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Deadlock Detection – Centralized ApproachDeadlock Detection – Centralized Approach

 Each site keeps a local wait-for graph  

 The nodes of the graph correspond to all the processes that are 
currently either holding or requesting any of the resources local to 
that site

 A global wait-for graph is maintained in a single coordination process; 
this graph is the union of all local wait-for graphs 

 There are three different options (points in time) when the wait-for graph 
may be constructed:

1. Whenever a new edge is inserted or removed in one of the local wait-for 
graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

 Unnecessary rollbacks may occur as a result of false cycles
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Detection Algorithm Based on Option Detection Algorithm Based on Option 
33

 Append unique identifiers (timestamps) to requests form different 
sites

 When process Pi, at site A, requests a resource from process Pj, at 
site B, a request message with timestamp TS is sent

 The edge Pi → Pj with the label TS is inserted in the local wait-for of 
A. The edge is inserted in the local wait-for graph of B only if B has 
received the request message and cannot immediately grant the 
requested resource
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The Algorithm The Algorithm 

1. The controller sends an initiating message to each site in the 
system 

2. On receiving this message, a site sends its local wait-for graph to 
the coordinator

3. When the controller has received a reply from each site, it 
constructs a graph as follows:

(a) The constructed graph contains a vertex for every process in 
the system

(b)   The graph has an edge Pi → Pj if and only if 

(1) there is an edge Pi → Pj in one of the wait-for graphs, or

(2) an edge Pi → Pj with some label TS appears in more 
than one wait-for graph

If the constructed graph contains a cycle ⇒ deadlock
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Local and Global Wait-For GraphsLocal and Global Wait-For Graphs
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Fully Distributed ApproachFully Distributed Approach

 All controllers share equally the responsibility for detecting 
deadlock

 Every site constructs a wait-for graph that represents a part of the 
total graph

 We add one additional node Pex to each local wait-for graph

 If a local wait-for graph contains a cycle that does not involve node 
Pex, then the system is in a deadlock state

 A cycle involving Pex implies the possibility of a deadlock

 To ascertain whether a deadlock does exist, a distributed 
deadlock-detection algorithm must be invoked
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Augmented Local Wait-For Graphs Augmented Local Wait-For Graphs 
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Augmented Local Wait-For Graph in Site S2Augmented Local Wait-For Graph in Site S2
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Election AlgorithmsElection Algorithms

 Determine where a new copy of the coordinator should be restarted

 Assume that a unique priority number is associated with each 
active process in the system, and assume that the priority number 
of process Pi  is i

 Assume a one-to-one correspondence between processes and 
sites

 The coordinator is always the process with the largest priority 
number.  When a coordinator fails, the algorithm must elect that 
active process with the largest priority number

 Two algorithms, the bully algorithm and a ring algorithm, can be 
used to elect a new coordinator in case of failures
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Bully AlgorithmBully Algorithm

 Applicable to systems where every process can send a message to 
every other process in the system

 If process Pi sends a request that is not answered by the 
coordinator within a time interval T, assume that the coordinator 
has failed; Pi tries to elect itself as the new coordinator

 Pi sends an election message to every process with a higher 
priority number, Pi then waits for any of these processes to answer 
within T
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Bully Algorithm (Cont.)Bully Algorithm (Cont.)

 If no response within T, assume that all processes with numbers 
greater than i have failed; Pi elects itself the new coordinator

 If answer is received, Pi begins time interval T´, waiting to receive a 
message that a process with a higher priority number has been 
elected

 If no message is sent within T´, assume the process with a higher 
number has failed; Pi should restart the algorithm
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Bully Algorithm (Cont.)Bully Algorithm (Cont.)

 If Pi is not the coordinator, then, at any time during execution, Pi 

may receive one of the following two messages from process Pj

 Pj is the new coordinator (j > i).  Pi, in turn, records this 
information

 Pj started an election (j > i).  Pi, sends a response to Pj and 
begins its own election algorithm, provided that Pi has not 
already initiated such an election

 After a failed process recovers, it immediately begins execution of 
the same algorithm

 If there are no active processes with higher numbers, the recovered 
process forces all processes with lower number to let it become the 
coordinator process, even if there is a currently active coordinator 
with a lower number 
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Ring AlgorithmRing Algorithm

 Applicable to systems organized as a ring (logically or physically)

 Assumes that the links are unidirectional, and that processes send 
their messages to their right neighbors 

 Each process maintains an active list, consisting of all the priority 
numbers of all active processes in the system when the algorithm 
ends

 If process Pi detects a coordinator failure, I creates a new active list 
that is initially empty.  It then sends a message elect(i) to its right 
neighbor, and adds the number i to its active list
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Ring Algorithm (Cont.)Ring Algorithm (Cont.)

 If Pi receives a message elect(j) from the process on the left, it must 
respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi creates a new 
active list with the numbers i and j

 It then sends the message elect(i), followed by the message 
elect(j)

2. If i ≠ j, then the active list for Pi now contains the numbers of all the 
active processes in the system  

 Pi can now determine the largest number in the active list to 
identify the new coordinator process

3. If i = j, then Pi receives the message elect(i)

 The active list for Pi contains all the active processes in the 
system

 Pi can now determine the new coordinator process.
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Reaching AgreementReaching Agreement

 There are applications where a set of processes wish to agree on a 
common “value”

 Such agreement may not take place due to:

 Faulty communication medium

 Faulty processes 

 Processes may send garbled or incorrect messages to other 
processes

 A subset of the processes may collaborate with each other 
in an attempt to defeat the scheme
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Faulty CommunicationsFaulty Communications

 Process Pi at site A, has sent a message to process Pj at site B; to 
proceed, Pi needs to know if Pj has received the message

 Detect failures using a time-out scheme
 When Pi sends out a message, it also specifies a time interval 

during which it is willing to wait for an acknowledgment 
message form Pj

 When Pj receives the message, it immediately sends an 
acknowledgment to Pi

 If Pi receives the acknowledgment message within the specified 
time interval, it concludes that Pj has received its message

 If a time-out occurs, Pj needs to retransmit its message and 
wait for an acknowledgment

 Continue until Pi either receives an acknowledgment, or is 
notified by the system that B is down
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Faulty Communications (Cont.)Faulty Communications (Cont.)

 Suppose that Pj also needs to know that Pi has received its 
acknowledgment message, in order to decide on how to proceed

 In the presence of failure, it is not possible to accomplish this 
task

 It is not possible in a distributed environment for processes Pi 
and Pj to agree completely on their respective states
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Faulty Processes (Byzantine Generals Problem)Faulty Processes (Byzantine Generals Problem)

 Communication medium is reliable, but processes can fail in 
unpredictable ways 

 Consider a system of n processes, of which no more than m are 
faulty

 Suppose that each process Pi has some private value of Vi

 Devise an algorithm that allows each nonfaulty Pi to construct a 
vector Xi = (Ai,1, Ai,2, …, Ai,n) such that::

 If Pj is a nonfaulty process, then Aij = Vj.

 If Pi and Pj are both nonfaulty processes, then Xi = Xj.

 Solutions share the following properties

 A correct algorithm can be devised only if n ≥ 3 x m + 1

 The worst-case delay for reaching agreement is 
proportionate to m + 1 message-passing delays
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Faulty Processes (Cont.)Faulty Processes (Cont.)

 An algorithm for the case where m = 1 and n = 4 requires two rounds 
of information exchange:

 Each process sends its private value to the other 3 processes

 Each process sends the information it has obtained in the first 
round to all other processes

 If a faulty process refuses to send messages, a nonfaulty process can 
choose an arbitrary value and pretend that that value was sent by that 
process 

 After the two rounds are completed, a nonfaulty process Pi can 
construct its vector Xi = (Ai,1, Ai,2, Ai,3, Ai,4) as follows:

 Ai,j = Vi

 For j ≠ i, if at least two of the three values reported for process Pj 
agree, then the majority value is used to set the value of Aij

 Otherwise, a default value (nil) is used
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