

Chapter 10: File-System InterfaceChapter 10: File-System Interface

10.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 10: File-System InterfaceChapter 10: File-System Interface

 File Concept

 Access Methods

 Directory Structure

 File-System Mounting

 File Sharing

 Protection

10.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ObjectivesObjectives

 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access methods,
file sharing, file locking, and directory structures

 To explore file-system protection

10.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File ConceptFile Concept

 Contiguous logical address space

 Types:

 Data

 numeric

 character

 binary

 Program

10.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File StructureFile Structure

 None - sequence of words, bytes
 Simple record structure

 Lines
 Fixed length
 Variable length

 Complex Structures
 Formatted document
 Relocatable load file

 Can simulate last two with first method by inserting appropriate
control characters

 Who decides:
 Operating system
 Program

10.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File AttributesFile Attributes

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security,
and usage monitoring

 Information about files are kept in the directory structure, which is
maintained on the disk

10.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File OperationsFile Operations

 File is an abstract data type

 Create

 Write

 Read

 Reposition within file

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for entry Fi, and
move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to directory
structure on disk

10.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Open FilesOpen Files

 Several pieces of data are needed to manage open files:

 File pointer: pointer to last read/write location, per process that
has the file open

 File-open count: counter of number of times a file is open – to
allow removal of data from open-file table when last processes
closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information

10.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Open File LockingOpen File Locking

 Provided by some operating systems and file systems

 Mediates access to a file

 Mandatory or advisory:

 Mandatory – access is denied depending on locks held and
requested

 Advisory – processes can find status of locks and decide what
to do

10.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File Locking Example – Java APIFile Locking Example – Java API

import java.io.*;
import java.nio.channels.*;
public class LockingExample {

public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;
FileLock exclusiveLock = null;
try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");
// get the channel for the file
FileChannel ch = raf.getChannel();
// this locks the first half of the file - exclusive
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
/** Now modify the data . . . */
// release the lock
exclusiveLock.release();

10.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File Locking Example – Java API (cont)File Locking Example – Java API (cont)

// this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1, raf.length(),

SHARED);
/** Now read the data . . . */
// release the lock
exclusiveLock.release();

} catch (java.io.IOException ioe) {
System.err.println(ioe);

}finally {
if (exclusiveLock != null)
exclusiveLock.release();
if (sharedLock != null)
sharedLock.release();

}
}

}

10.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File Types – Name, ExtensionFile Types – Name, Extension

10.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Access MethodsAccess Methods

 Sequential Access
read next
write next
reset
no read after last write

(rewrite)
 Direct Access

read n
write n
position to n

read next
write next

rewrite n

n = relative block number

10.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Sequential-access FileSequential-access File

10.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Simulation of Sequential Access on a Direct-access FileSimulation of Sequential Access on a Direct-access File

10.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Index and Relative FilesExample of Index and Relative Files

10.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Directory StructureDirectory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
Backups of these two structures are kept on tapes

10.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A Typical File-system OrganizationA Typical File-system Organization

10.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operations Performed on DirectoryOperations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

10.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Organize the Directory (Logically) to ObtainOrganize the Directory (Logically) to Obtain

 Efficiency – locating a file quickly

 Naming – convenient to users

 Two users can have same name for different files

 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all
Java programs, all games, …)

10.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Single-Level DirectorySingle-Level Directory

 A single directory for all users

Naming problem

Grouping problem

10.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Two-Level DirectoryTwo-Level Directory

 Separate directory for each user

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability

10.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Tree-Structured DirectoriesTree-Structured Directories

10.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Tree-Structured Directories (Cont)Tree-Structured Directories (Cont)

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list

10.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Tree-Structured Directories (Cont)Tree-Structured Directories (Cont)

 Absolute or relative path name
 Creating a new file is done in current directory
 Delete a file

rm <file-name>
 Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail

mkdir count

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

10.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Acyclic-Graph DirectoriesAcyclic-Graph Directories

 Have shared subdirectories and files

10.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Acyclic-Graph Directories (Cont.)Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)

 If dict deletes list ⇒ dangling pointer

Solutions:

 Backpointers, so we can delete all pointers
Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

 New directory entry type

 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file

10.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

General Graph DirectoryGeneral Graph Directory

10.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

General Graph Directory (Cont.)General Graph Directory (Cont.)

 How do we guarantee no cycles?

 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

10.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File System MountingFile System Mounting

 A file system must be mounted before it can be
accessed

 A unmounted file system (i.e. Fig. 11-11(b)) is mounted
at a mount point

10.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

(a) Existing. (b) Unmounted Partition(a) Existing. (b) Unmounted Partition

10.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Mount PointMount Point

10.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File SharingFile Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing
method

10.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File Sharing – Multiple UsersFile Sharing – Multiple Users

 User IDs identify users, allowing permissions and
protections to be per-user

 Group IDs allow users to be in groups, permitting group
access rights

10.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File Sharing – Remote File SystemsFile Sharing – Remote File Systems

 Uses networking to allow file system access between systems
 Manually via programs like FTP
 Automatically, seamlessly using distributed file systems
 Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems from
servers
 Server can serve multiple clients
 Client and user-on-client identification is insecure or

complicated
 NFS is standard UNIX client-server file sharing protocol
 CIFS is standard Windows protocol
 Standard operating system file calls are translated into remote

calls
 Distributed Information Systems (distributed naming services) such

as LDAP, DNS, NIS, Active Directory implement unified access to
information needed for remote computing

10.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File Sharing – Failure ModesFile Sharing – Failure Modes

 Remote file systems add new failure modes, due to network
failure, server failure

 Recovery from failure can involve state information about
status of each remote request

 Stateless protocols such as NFS include all information in
each request, allowing easy recovery but less security

10.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File Sharing – Consistency SemanticsFile Sharing – Consistency Semantics

 Consistency semantics specify how multiple users are to access
a shared file simultaneously
 Similar to Ch 7 process synchronization algorithms

 Tend to be less complex due to disk I/O and network
latency (for remote file systems

 Andrew File System (AFS) implemented complex remote file
sharing semantics

 Unix file system (UFS) implements:
 Writes to an open file visible immediately to other users of

the same open file
 Sharing file pointer to allow multiple users to read and write

concurrently
 AFS has session semantics

 Writes only visible to sessions starting after the file is closed

10.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ProtectionProtection

 File owner/creator should be able to control:

 what can be done

 by whom

 Types of access

 Read
 Write
 Execute
 Append
 Delete
 List

10.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Access Lists and GroupsAccess Lists and Groups

 Mode of access: read, write, execute
 Three classes of users

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

 Ask manager to create a group (unique name), say G, and add
some users to the group.

 For a particular file (say game) or subdirectory, define an
appropriate access.

owner group public

chmod 761 game

Attach a group to a file
 chgrp G game

10.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XP Access-control List ManagementWindows XP Access-control List Management

10.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A Sample UNIX Directory ListingA Sample UNIX Directory Listing

End of Chapter 10End of Chapter 10

