Chapter 2: Operating-System Structures
QIBBBIIGIIBDIICIBDIILIIBPIIG

chnapler <. vperating-systiemi
Structures

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Virtual Machines

Operating System Generation

System Boot

R ~ |
Operating System Concepts 2.2 Silberschatz, Galvin and Gagne ©2005

Objectives

B To describe the services an operating system provides to users,
processes, and other systems

B To discuss the various ways of structuring an operating system

B To explain how operating systems are installed and customized
and how they boot

Operating System Concepts 2.3 Silberschatz, Galvin and Gagne ©2005

Operating System Services

B One set of operating-system services provides functions that are
helpful to the user:

® User interface - Almost all operating systems have a user interface (Ul)

» Varies between Command-Line (CLI), Graphics User Interface
(GUI), Batch

® Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

® 1/O operations - A running program may require 1/0, which may involve
a file or an 1/O device.

® File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories, create
and delete them, search them, list file Information, permission
management.

e~y "4,,,:? & Q; X
Ve vt

Operating System Concepts 2.4 Silberschatz, Galvin and Gagne ©2005

Operating System Services (Cont.)

B One set of operating-system services provides functions that are
helpful to the user (Cont):

® Communications — Processes may exchange information, on the same
computer or between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

® Error detection — OS needs to be constantly aware of possible errors

» May occur in the CPU and memory hardware, in I/O devices, in user
program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

/‘*»3 = >
Operating System Concepts 2.5 Silberschatz, Galvin and Gagne ©2005

Operating System Services (Cont.)

B Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

® Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

> Many types of resources - Some (such as CPU cycles,mainmemory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code.

® Accounting - To keep track of which users use how much and what kinds
of computer resources

® Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

» |f a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

Operating System Concepts 2.6 Silberschatz, Galvin and Gagne ©2005

User Operating System Interface - CLI

CLI allows direct command entry

» Sometimes implemented in kernel, sometimes by systems
program

» Sometimes multiple flavors implemented — shells
» Primarily fetches a command from user and executes it

Sometimes commands built-in, sometimes just names of
programs

If the latter, adding new features doesn’t require shell
modification

Operating System Concepts 2.7 Silberschatz, Galvin and Gagne ©2005

User Operating System Interface - GUI

B User-friendly desktop metaphor interface
® Usually mouse, keyboard, and monitor
® |cons represent files, programs, actions, etc

® Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

® |nvented at Xerox PARC
B Many systems now include both CLI and GUI interfaces
® Microsoft Windows is GUI with CLI “command” shell

® Apple Mac OS X as “Agqua” GUI interface with UNIX kernel
underneath and shells available

® Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

EENNN i e O
v R il

Operating System Concepts 2.8 Silberschatz, Galvin and Gagne ©2005

System Calls

B Programming interface to the services provided by the OS
B Typically written in a high-level language (C or C++)

B Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

B Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

B Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

/‘*»3 = >
Operating System Concepts 2.9 Silberschatz, Galvin and Gagne ©2005

Example of System Calls

B System call sequence to copy the contents of one file to another file

| source file p‘ destination file |

£ Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

Operating System Concepts 2.10 Silberschatz, Galvin and Gagne ©2”‘(‘f)05

, W ?'

Example of Standard API

B Consider the ReadFile() function in the
B Win32 APl—a function for reading from a file

return value

'

BOOL

ReadFile c

|

function name

(HANDLE
LPVOID
DWORD
LPDWORD
LPOVERLAPPED

file,
buffer,
bytes To Read, | parameters
bytes Read,
ovl) ;

B A description of the parameters passed to ReadFile()
HANDLE file—the file to be read
LPVOID buffer—a buffer where the data will be read into and written

from

DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read

LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Operating System Concepts

211

System Call Implementation

B Typically, a number associated with each system call

® System-call interface maintains a table indexed according to
these numbers

B The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

B The caller need know nothing about how the system call is
implemented

® Just needs to obey API and understand what OS will do as a
result call

® Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built
into libraries included with compiler)

NG
Operating System Concepts 2 Silberschatz, Galvin and Gagne ©2005

APl — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
I open ()
Implementation
i » of open ()
system call
return

Operating System Concepts 2.13 Silberschatz, Galvin and Gagne 05

Standard C Library Example

B C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return o;

J

standard C library

write ()
system call

Operating System Concepts 2.14 Silberschatz, Galvin and Gagne ©2005

System Call Parameter Passing

B Often, more information is required than simply identity of desired
system call

® Exact type and amount of information vary according to OS and
call

B Three general methods used to pass parameters to the OS
® Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

® Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register

» This approach taken by Linux and Solaris

® Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

® Block and stack methods do not limit the number or length of
parameters being passed

Operating System Concepts 2.15 Silberschatz, Galvin and Gagne ©2005

Parameter Passing via Table

—

register

X: parameters
for call

—™| use parameters code for
load address X / from table X system
S

system call 13 call 13

user program

operating system

Operating System Concepts 2.16 Silberschatz, Galvin and Gagne 205

Types of System Calls

Process control

File management
Device management
Information maintenance

Communications

N 'l
Operating System Concepts 2.17 Silberschatz, Galvin and Gagne ©2005

MS-DOS execution

free memory

free memory

process

command
interpreter command

interpreter

kernel kernel

(a) (b)

(a) At system startup (b) running a program

Operating System Concepts 2.18 Silberschatz, Galvin and Gagne ©2005

FreeBSD Running Multiple Programs

process D

free memory

process C

interpreter

process B

kernel

Operating System Concepts 2.19

System Programs

B System programs provide a convenient environment for program
development and execution. The can be divided into:

® File manipulation

Status information

File modification

Programming language support
Program loading and execution

Communications
® Application programs

B Most users’ view of the operation system is defined by system
programs, not the actual system calls

— :,* ‘ .‘
Operating System Concepts 2.20 Silberschatz, Galvin and Gagne ©2005

. Solaris 10 dtrace Following System Call

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION
-> XEventsQueued
-> XEventsQueued
-> XllTransBytesReadable
<—- XllTransBytesReadable
-> XllTransSocketBytesReadable
<— XllTransSocketBytesreadable
- ioctl
-= loctl
-> getf
-> set _active fd
<— set active fd
<— getf
-> get udatamodel
<- get udatamodel

=]

OO0 00000000000
AR AARARRCCCcOdad

-> releasef
-> clear active £d
<— clear active fd
-> cV_broadcast
<— cV_broadcast
<— releasef
<— loctl
«<— loctl
<— _XEventsQueued
<— XEventsQueued

cooooooooo-
cocd="AamRA~RAR

Operating System Concepts 2.21 Silberschatz, Galvin and Gagne 05

System Programs

B Provide a convenient environment for program development and execution

® Some of them are simply user interfaces to system calls; others are
considerably more complex

B File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

B Status information

® Some ask the system for info - date, time, amount of available memory,
disk space, number of users

® Others provide detailed performance, logging, and debugging
information

® Typically, these programs format and print the output to the terminal or
other output devices

® Some systems implement a registry - used to store and retrieve
configuration information

Operating System Concepts 2.22

System Programs (cont’'d)

B File modification
® Text editors to create and modify files

® Special commands to search contents of files or perform
transformations of the text

B Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

B Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

B Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

® Allow users to send messages to one another’s screens,
browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

/‘*»3 %
Operating System Concepts 2.23 Silberschatz, Galvin and Gagne ©2005

Wb

Operating System Design and Implementation

Design and Implementation of OS not “solvable”, but some
approaches have proven successful

Internal structure of different Operating Systems can vary widely
Start by defining goals and specifications
Affected by choice of hardware, type of system

User goals and System goals

® User goals — operating system should be convenient to use,
easy to learn, reliable, safe, and fast

® System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

Operating System Concepts 2.24 Silberschatz, Galvin and Gagne ©2005

Operating System Design and Implementation (Cont.)

B |mportant principle to separate

Policy: What will be done?
Mechanism: How to do it?

B Mechanisms determine how to do something, policies decide what
will be done

® The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later

, §
R il

Operating System Concepts 2.25 Silberschatz, Galvin and Gagne ©2005

Simple Structure

B MS-DOS - written to provide the most functionality in the least
space

® Not divided into modules

® Although MS-DOS has some structure, its interfaces and levels
of functionality are not well separated

Operating System Concepts 2.26

application program

resident system program

MS-DOS device drivers

ROM BIOS device drivers

Operating System Concepts

Layered Approach

B The operating system is divided into a number of layers (levels),
each built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

B With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

R o "
Operating System Concepts 2.28 Silberschatz, Galvin and Gagne ©2005

layer N
user interface

layer O
hardware

Operating System Concepts 2.29 Silberschatz, Galvin and Gagne 2005

UNIX

B UNIX - limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

® Systems programs
® The kernel

» Consists of everything below the system-call interface and
above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

NG
Operating System Concepts 2.30 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block 1/O page replacement

character 1/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

231

Microkernel System Structure

B Moves as much from the kernel into “user” space

B Communication takes place between user modules using message
passing

B Benefits:
® Easier to extend a microkernel
® Easier to port the operating system to new architectures
® More reliable (less code is running in kernel mode)
® More secure
B Detriments:

® Performance overhead of user space to kernel space
communication

Operating System Concepts 2.32 Silberschatz, Galvin and Gagne ©2005

Mac OS X Structure

application environments
and common services

kernel BSD

environment
‘ Mach

Operating System Concepts 2.33 Silberschatz, Galvin and Gagne 205

Modules

B Most modern operating systems implement kernel modules
® Uses object-oriented approach
® Each core component is separate
® Each talks to the others over known interfaces
® Each is loadable as needed within the kernel
B OQverall, similar to layers but with more flexible

Operating System Concepts 2.34 Silberschatz, Galvin and Gagne ©2005

device and
bus drivers

miscellaneous
modules

modules

STREAMS

Solaris Modular Approach

scheduling
classes

core Solaris

kernel loadable

system calls

executable
formats

Operating System Concepts

2.35

Virtual Machines

B A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system kernel
as though they were all hardware

B A virtual machine provides an interface identical to the
underlying bare hardware

B The operating system creates the illusion of multiple
processes, each executing on its own processor with its own
(virtual) memory

V = ":7 . o
Operating System Concepts 2.36 Silberschatz, Galvin and Gagne ©2005

Virtual Machines (Cont.)

B The resources of the physical computer are shared to create the
virtual machines

® CPU scheduling can create the appearance that users have
their own processor

® Spooling and a file system can provide virtual card readers and
virtual line printers

® A normal user time-sharing terminal serves as the virtual
machine operator’'s console

Operating System Concepts 2.37 Silberschatz, Galvin and Gagne ©2005

Virtual Machines (Cont.)

processes

¥ red

kernel

hardware

Operating System Concepts

@)

programming/
interface

processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3

virtual-machine
implementation

hardware

(b)

(a) Nonvirtual machine (b) virtual machine

2.38

Silberschatz, Galvin an& Gagne ©2,05

Virtual Machines (Cont.)

B The virtual-machine concept provides complete protection of system
resources since each virtual machine is isolated from all other virtual
machines. This isolation, however, permits no direct sharing of
resources.

B A virtual-machine system is a perfect vehicle for operating-systems
research and development. System development is done on the
virtual machine, instead of on a physical machine and so does not
disrupt normal system operation.

B The virtual machine concept is difficult to implement due to the effort
required to provide an exact duplicate to the underlying machine

Operating System Concepts 2.39 Silberschatz, Galvin and Gagne ©2005

VMware Architecture

application application application application

guest operating guest operating guest operating
system system system

(free BSD) (Windows NT) (Windows XP)

virtual CPU virtual CPU virtual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices

virtualization layer

l

host operating system
(Linux)

hardware

memory I/O devices

Operating System Concepts 2.40 Silberschatz, Galvin and Gagne ©'2“‘05

The Java Virtual Machine

'Java program

.class files

class loader

'

Java
interpreter

A4

host system
(Windows, Linux, etc.)

Operating System Concepts 241

Operating System Generation

B Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

B SYSGEN program obtains information concerning the specific
configuration of the hardware system

B Booting — starting a computer by loading the kernel

B Bootstrap program — code stored in ROM that is able to locate the
kernel, load it into memory, and start its execution

V = ":7 . o
Operating System Concepts 2.42 Silberschatz, Galvin and Gagne ©2005

System Boot

B Operating system must be made available to hardware so
hardware can start it

® Small piece of code — bootstrap loader, locates the kernel,
loads it into memory, and starts it

® Sometimes two-step process where boot block at fixed
location loads bootstrap loader

® When power initialized on system, execution starts at a fixed
memory location

» Firmware used to hold initial boot code

Ve v "
Operating System Concepts 2.43 Silberschatz, Galvin and Gagne ©2005

End of Chapter 2
QIBBBIIGIIBDIICIIBD DI IIBDIIG

