
  

Chapter 3:  ProcessesChapter 3:  Processes



3.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 3:  ProcessesChapter 3:  Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Cooperating Processes

 Interprocess Communication

 Communication in Client-Server Systems



3.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process ConceptProcess Concept

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost 
interchangeably

 Process – a program in execution; process execution must 
progress in sequential fashion

 A process includes:
 program counter 
 stack
 data section



3.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process in MemoryProcess in Memory



3.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process StateProcess State

 As a process executes, it changes state

 new:  The process is being created

 running:  Instructions are being executed

 waiting:  The process is waiting for some event to occur

 ready:  The process is waiting to be assigned to a process

 terminated:  The process has finished execution



3.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Diagram of Process StateDiagram of Process State



3.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Control Block (PCB)Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information



3.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Control Block (PCB)Process Control Block (PCB)



3.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

CPU Switch From Process to ProcessCPU Switch From Process to Process



3.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Scheduling QueuesProcess Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, 
ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues



3.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Ready Queue And Various I/O Device QueuesReady Queue And Various I/O Device Queues



3.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Representation of Process SchedulingRepresentation of Process Scheduling



3.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SchedulersSchedulers

 Long-term scheduler  (or job scheduler) – selects which 
processes should be brought into the ready queue

 Short-term scheduler  (or CPU scheduler) – selects 
which process should be executed next and allocates 
CPU



3.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Addition of Medium Term SchedulingAddition of Medium Term Scheduling



3.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schedulers (Cont.)Schedulers (Cont.)

 Short-term scheduler is invoked very frequently (milliseconds) ⇒ 
(must be fast)

 Long-term scheduler is invoked very infrequently (seconds, 
minutes) ⇒ (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than 
computations, many short CPU bursts

 CPU-bound process – spends more time doing computations; 
few very long CPU bursts



3.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Context SwitchContext Switch

 When CPU switches to another process, the system must save the 
state of the old process and load the saved state for the new 
process

 Context-switch time is overhead; the system does no useful work 
while switching

 Time dependent on hardware support



3.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process CreationProcess Creation

 Parent process create children processes, which, in turn create 
other processes, forming a tree of processes

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate



3.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Creation (Cont.)Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ 
memory space with a new program



3.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process CreationProcess Creation



3.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

C Program Forking Separate ProcessC Program Forking Separate Process

int main()
{
Pid_t  pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to 
complete */

wait (NULL);
printf ("Child Complete");
exit(0);

}
}



3.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A tree of processes on a typical SolarisA tree of processes on a typical Solaris



3.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process TerminationProcess Termination

 Process executes last statement and asks the operating system to 
delete it (exit)
 Output data from child to parent (via wait)
 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)
 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its 
parent terminates

– All children terminated - cascading termination



3.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Cooperating ProcessesCooperating Processes

 Independent process cannot affect or be affected by the execution 
of another process

 Cooperating process can affect or be affected by the execution of 
another process

 Advantages of process cooperation

 Information sharing 

 Computation speed-up

 Modularity

 Convenience



3.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Producer-Consumer ProblemProducer-Consumer Problem

 Paradigm for cooperating processes, producer process 
produces information that is consumed by a consumer 
process

 unbounded-buffer places no practical limit on the size of 
the buffer

 bounded-buffer assumes that there is a fixed buffer size



3.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bounded-Buffer – Shared-Memory SolutionBounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

Typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;
 Solution is correct, but can only use BUFFER_SIZE-1 elements



3.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bounded-Buffer – Insert() MethodBounded-Buffer – Insert() Method

while (true) {
   /* Produce an item */

        while (((in = (in + 1) % BUFFER SIZE 
count)  == out)

     ;   /* do nothing -- no free buffers */

    buffer[in] = item;

    in = (in + 1) % BUFFER SIZE;

     {



3.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bounded Buffer – Remove() MethodBounded Buffer – Remove() Method

while (true) {

          while (in == out)

                 ; // do nothing -- nothing 
to consume

     // remove an item from the buffer

     item = buffer[out];

     out = (out + 1) % BUFFER SIZE;

return item;

     {



3.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Interprocess Communication (IPC)Interprocess Communication (IPC)

 Mechanism for processes to communicate and to synchronize their 
actions

 Message system – processes communicate with each other without 
resorting to shared variables

 IPC facility provides two operations:
 send(message) – message size fixed or variable 
 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them
 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware bus)
 logical (e.g., logical properties)



3.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Implementation QuestionsImplementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of communicating 
processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or 
variable?

 Is a link unidirectional or bi-directional?



3.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Communications Models Communications Models 



3.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Direct CommunicationDirect Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating 
processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional



3.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indirect CommunicationIndirect Communication

 Messages are directed and received from mailboxes (also 
referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication 
links

 Link may be unidirectional or bi-directional



3.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indirect CommunicationIndirect Communication

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A



3.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indirect CommunicationIndirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver.  Sender is 
notified who the receiver was.



3.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SynchronizationSynchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous
 Blocking send has the sender block until the message is 

received

 Blocking receive has the receiver block until a message is 
available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message and 

continue

 Non-blocking receive has the receiver receive a valid 
message or null



3.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BufferingBuffering

 Queue of messages attached to the link; implemented in one of 
three ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length 
Sender never waits



3.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Client-Server CommunicationClient-Server Communication

 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)



3.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SocketsSockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host 
161.25.19.8

 Communication consists between a pair of sockets



3.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Socket CommunicationSocket Communication



3.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Remote Procedure CallsRemote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls between 
processes on networked systems.

 Stubs – client-side proxy for the actual procedure on the server.

 The client-side stub locates the server and marshalls the 
parameters.

 The server-side stub receives this message, unpacks the 
marshalled parameters, and peforms the procedure on the server.



3.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Execution of RPCExecution of RPC



3.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Remote Method InvocationRemote Method Invocation

 Remote Method Invocation (RMI) is a Java mechanism similar to 
RPCs.

 RMI allows a Java program on one machine to invoke a method on 
a remote object.



3.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Marshalling ParametersMarshalling Parameters



  

End of Chapter 3End of Chapter 3


