

Universita' di Verona Dipartimento di Informatica

Introduzione ai servizi multimediali telefonia, videoconferenza e streaming

Davide Quaglia a.a. 2008/2009

1

Servizi multimediali interattivi (telefonia, videoconferenza)

Problematiche

- Conferenza e sessione sono la generalizzazione della telefonata
- Fare una chiamata (protocollo di segnalazione)
 - trovare l'utente
 - negoziare i parametri di trasmissione
- Trasmettere i dati multimediali (voce, video, lavagna condivisa, messaggi generici)
- Autenticazione, Autorizzazione, Accounting
- Interoperabilita' con telefonia tradizionale
 - traduzione degli indirizzi degli utenti
 - Internet usa i nomi mentre la telefonia tradizionale usa i numeri secondo lo standard ITU-T E.164
 - traduzione dei formati di compressione

3

Standard per la telefonia su IP

- ITU-T H.323
 - identifica un insieme di standard da usare per i vari aspetti della telefonata (segnalazione, negoziazione, trasporto)
 - standard complesso e per questo poco usato
 - applicazioni: MS NetMeeting, GnomeMeeting
 - apparati: PictureTel, RadCom, Policom, ecc
- Session Initiation Protocol (SIP)
 - standard IETF
 - molto leggero (si occupa solo della segnalazione)
 - formato testuale come HTTP (ottimo debug)
 - delega ad altri protocolli i vari aspetti della segnalazione
 - attualmente sta soppiantando H.323

Session Initiation Protocol (SIP)

5

Session Initiation Protocol (SIP)

- Nato nel 1996, stabilizzato nel 2002
- RFC 3261 --> SIP
- RFC 3262 --> Reliability of Provisional Responses in the Session Initiation Protocol
- RFC 3263 --> Locating SIP Servers
- RFC 3264 --> An Offer/Answer Model with the Session Description Protocol (SDP)
- molte altre RFC per aspetti particolari ...

Introduzione a SIP

- SIP e' un protocollo di livello applicazione
- Protocollo testuale (come HTTP, FTP, ecc.)
- Creazione, modifica e terminazione di sessioni (conferenze) tra utenti
- Tramite SIP si puo' invitare utenti a sessioni gia' esistenti (ad es. conferenze multicast)
- Protocollo per la creazione di sessioni tra "pari" a differenza di RTSP che identifica un client ed un server

7

Utenti e terminali

 Gli utenti sono caratterizzati da un nome univoco del tipo

sip:nome@dominio

- Gli utenti utilizzano terminali che si comportano da host nel contesto Internet
 - hanno un indirizzo IP
 - possono avere un nome associato all'IP tramite DNS
- Sono terminali: telefoni VoIP, programmi di telefonia per PC (softphone)
- Con le WLAN si possono creare anche i cordless (ma consumano ancora troppo!)

Alice's	Ciclo di vita di una sessione atlanta.com biloxi.com proxy proxy	
>	INVITE F1	John .
Media Session	Media Session	

INVITE Destination Internet source INVITE sip:bob@biloxi.com SIP/2.0 Via: SIP/2.0/UDP pc33.atlanta.com; branch=z9hG4bK776asdhds Max-Forwards: 70 To: Bob <sip:bob@biloxi.com> From: Alice <sip:alice@atlanta.com>;tag=1928301774 Call-ID: a84b4c76e66710@pc33.atlanta.com CSeq: 314159 INVITE Contact: <sip:alice@pc33.atlanta.com> Content-Type: application/sdp Content-Length: 142 dialog ID descrizione SDP (tipo di media, formato, sampling rate, porte UDP, ...) 10

INVITE: call routing

- Il telefono di Alice non conosce la locazione del telefono di Bob e neanche del SIP server del dominio biloxi.com
- Il telefono di Alice contatta il server SIP del proprio dominio atlanta.com
 - configurato staticamente
 - configurato tramite DHCP
- Il server SIP di atlanta.com e' un proxy server
- Il server SIP di atlanta.com trova l'indirizzo IP del SIP server di biloxi.com tramite DNS

11

INVITE: call routing (2)

- Il server SIP di atlanta.com contatta il SIP server di biloxi.com
- II SIP server di biloxi.com ha un database dinamico in cui e' contenuto l'IP del telefono di Bob (location service)
- Il SIP server di biloxi.com contatta il telefono di Bob che inizia a squillare.
- Un messaggio di "ringing" viene mandato indietro al telefono di Alice che genera il segnale di squillo.
- Bob decide di rispondere alla telefonata e quindi viene spedito indietro un messagio di OK

INVITE: call answer SIP/2.0 200 OK Via: SIP/2.0/UDP server10.biloxi.com ;branch=z9hG4bKnashds8;received=192.0.2.3 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com ;branch=z9hG4bK77ef4c2312983.1;received=192.0.2.2 Via: SIP/2.0/UDP pc33.atlanta.com ;branch=z9hG4bK776asdhds ;received=192.0.2.1 To: Bob <sip:bob@biloxi.com>;tag=a6c85cf From: Alice <sip:alice@atlanta.com>;tag=1928301774 Call-ID: a84b4c76e66710@pc33.atlanta.com CSeq: 314159 INVITE Contact: <sip:bob@192.0.2.4> Content-Type: application/sdp dialog ID Content-Length: 131

descrizione SDP per la negoziazione dei parametri (tipo di media, formato, sampling rate, porte UDP,

Routing intelligente

- Il SIP server di biloxi.com contatta il SIP phone di Bob che puo' rispondere positivamente oppure no (ad es. dire che e' occupato).
- Il SIP server di biloxi.com puo' essere istruito da Bob a compiere diverse azioni
 - Se il telefono di Bob e' occupato fare in modo che Alice lasci un messaggio in una casella vocale (da ascoltare in un secondo tempo oppure recapitato per e-mail)
 - Far suonare diversi telefoni VoIP (redirezione della chiamata)

SDP over SIP

Conferma della risposta (ACK)

- Il telefono di Alice riceve il messaggio di OK e smette di generare il segnale di squillo.
- Il telefono di Alice manda direttamente al tel di Bob un messaggio di conferma (ACK)
- La sessione e' instaurata
- Alice e Bob si scambiano pacchetti RTP (audio o audio/video) e RTCP (controllo) usando i parametri negoziati con SDP
 - porte RTP e RTCP
 - tipo di compressione
 - parametri di compressione (ad es. frequenza di campionamento)

15

Modifica dei parametri di sessione

- Alice o Bob possono chiedere di cambiare certi parametri della sessione tramite un nuovo messaggio di INVITE con una nuova descrizione SDP
- La stessa terna TO/FROM/CALL-ID (dialog) e' riportata nel messaggio per indicare che non si tratta dell'instaurazione di una nuova sessione
- Se la controparte non accetta si continua con i parametri precedenti

Fine di una sessione

- Bob manda un messaggio di BYE direttamente ad Alice per indicare che vuole chiudere la sessione.
- Alice risponde con un OK direttamente a Bob.
- NOTA:
 - INVITE ha un processo a 3 fasi (INVITE/OK/ACK) a causa della negoziazione
 - BYE ha un processo a 2 fasi (BYE/OK)

17

Registrazione di una sessione

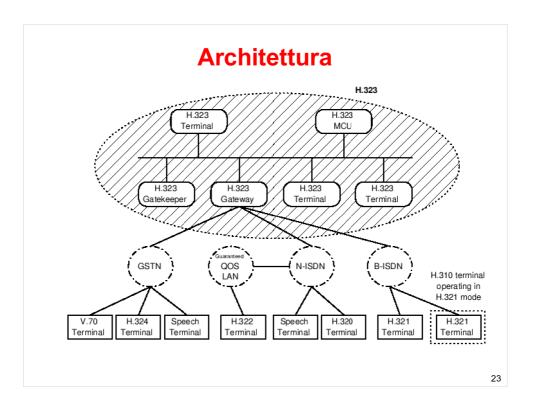
- Periodicamente il telefono di Bob manda messaggi di tipo REGISTER al server SIP del proprio dominio dichiarando la propria posizione
- Si crea un'associazione tra sip:bob@biloxi.com e l'indirizzo IP o il nome dell'host che rappresenta il telefono di Bob
- Questa operazione consente al server SIP di rintracciare Bob anche se esso si sposta (location service)
- Piu' utenti possono essere associati allo stesso host (ad es. tutte le persone dello stesso ufficio dotato di un unico telefono VoIP)

ITU-T H.323

19

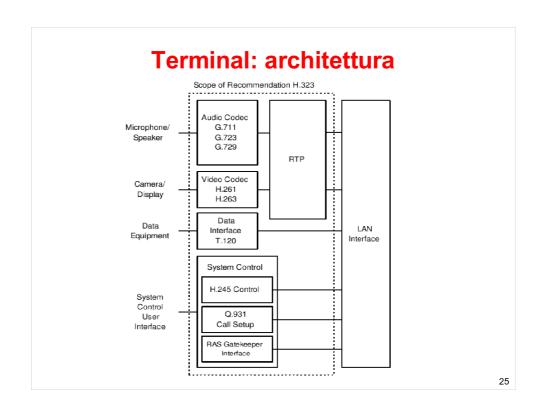
Introduzione ad H.323

- Insieme di standard per la comunicazione multimediale su reti IP che non forniscono garanzie di Qualita' del Servizio
- La versione più recente è la 2 approvata nel 1998
- Standardizza
 - le modalita' di chiamata (segnalazione)
 - l'uso dei formati di compressione
 - gestione della banda
 - conferenze tra piu' di due partecipanti
 - modalita' di traduzione verso la telefonia tradizionale (Public Switched Telephone Network – PSTN) e ISDN


Introduzione ad H.323 (2)

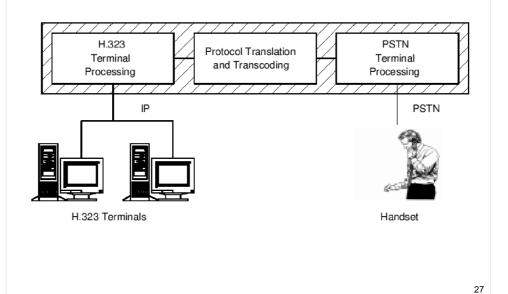
- Supporto di IP multicast
- Flessibilita' dei terminali (ad es. terminali audio/video possono co-esistere con quelli solo audio)
- Condivisione di dati (lavagna condivisa)
- Condivisione di applicazioni (desktop remoto)
- Usa i protocolli a livello trasporto del TCP/IP (cioe' TCP e UDP)

21


Architettura

- 4 entita'
 - terminale
 - gateway
 - gatekeeper
 - multipoint control unit (MCU)
- La presenza degli ultimi 3 elementi e' opzionale in una rete H.323

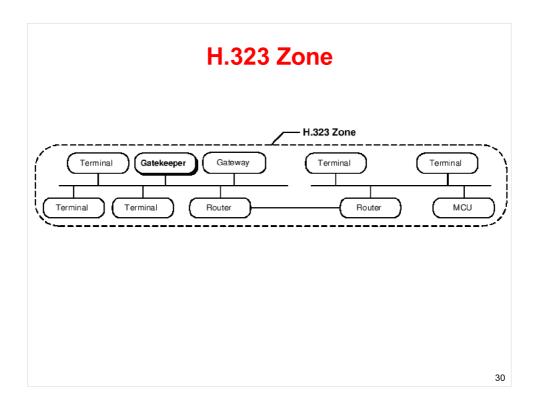
Terminal


- E' l'end-point di una comunicazione
 - Puo' essere un programma per PC oppure un apparato
- E' dotato di indirizzo IP e opzionalmente nome Internet
- Deve consentire almeno la comunicazione vocale
- Opzionalmente puo' consentire comun. video e dati
- Deve implementare i seguenti protocolli
 - RTP/RTCP
 - Q.931: segnalazione e chiamata
 - H.245: negoziazione delle funzionalita' e dell'uso del canale
 - RAS: Registration/Admission/Status per interfacciarsi al Gatekeeper

Gateway

- Permette l'interoperabilita' tra H.323 ed altri standard per conferenze
 - traduce i protocolli di segnalazione
 - conversione tra formati di compressione
- Entita' opzionale in H.323
 - non serve se tutti i terminali sono H.323
- Necessario se si vuole connettere l'infrastruttura VoIP con la rete telefonica tradizionale (PSTN)

Gateway H.323/PSTN

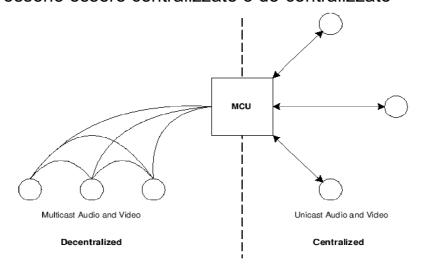


Gatekeeper

- Gestisce in maniera centralizzata tutte le chiamate da/verso un insieme di terminali detto zone
- Mantiene la corrispondenza tra numerazione tradizionale (E.164) e indirizzi IP
 - si puo' associare ad un telefono VoIP un numero tradizionale
- Gestisce l'uso della banda
 - puo' limitare il numero di chiamate simultanee all'interno della propria zona
 - l'amministratore di rete puo' decidere quanta banda assegnare al traffico VoIP e quanta al traffico dati (web, email, ecc.)

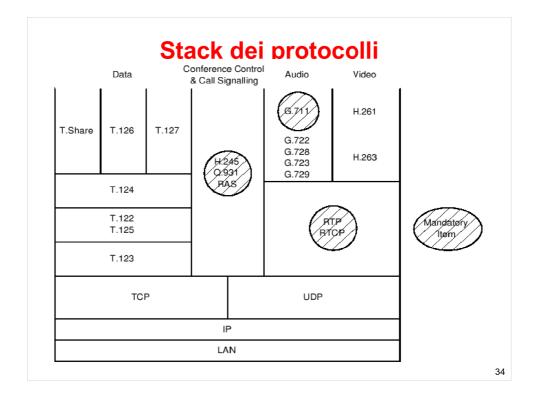
Gatekeeper (2)

- Permette l'accounting delle telefonate
- Permette di bilanciare il carico dei gateway per le telefonate uscenti verso altre reti
- Permette di implementare servizi evoluti come il trasferimento di chiamata


Multipoint Control Unit

- Serve per instaurare conferenze a 3 o piu' partecipanti
- E' costituito da un Multipoint Controller (MC) e zero o piu' Multipoint Processor (MP)
- MP gestisce il protocollo H.245 determina se usare il multicast o l'unicast
- MC gestisce la conversione tra formati e il mixaggio dei contributi audio/video

31


Conferenze multipunto

Possono essere centralizzate o de-centralizzate

Conferenze multipunto (2)

- Nelle conferenze centralizzate segnalazione (H.245) e dati (audio/video) passano per la MCU che li ridistribuisce in maniera unicast punto-punto
- Nelle conferenze de-centralizzate
 - la segnalazione e' gestita dalla MCU
 - i dati sono trasmessi su IP multicast
- Conferenze ibride
 - alcuni terminali su multicast e altri in unicast tramite MCU
 - video su multicast, audio e dati in unicast tramite MCU

Formati video

Videoconferencing Picture Format	Image Size in Pixels	H.261	H.263
sub-QCIF	128 x 96	optional	required
QCIF	176 x 144	required	required
CIF	352 x 288	optional	optional
4CIF	702 x 576	N/A	optional
16CIF	1408 x 1152	N/A	optional

35

Novita' della Versione 2

- Sicurezza
 - autenticazione, privacy, integrita', non-ripudio
- Fast call setup
- Servizi di gestione delle chiamate

Asterisk

- Insieme di componenti SW: applicativi + moduli OS kernel
- Funziona su Linux, Mac OS X, Solaris, OpenBSD, FreeBSD, Mac OS X
- Funzioni di
 - centralino
 - gateway VoIP/PSTN
 - server di applicazioni vocali evolute

37

Asterisk (2)

- Protocolli supportati:
 - Inter-Asterisk eXchange (IAX)
 - SIP
 - H.323
 - Media Gateway Control Protocol (MGCP)
 - Skinny Client Control Protocol (SCCP) by Cisco
- Oggetto di una esercitazione...

Introduzione allo streaming

39

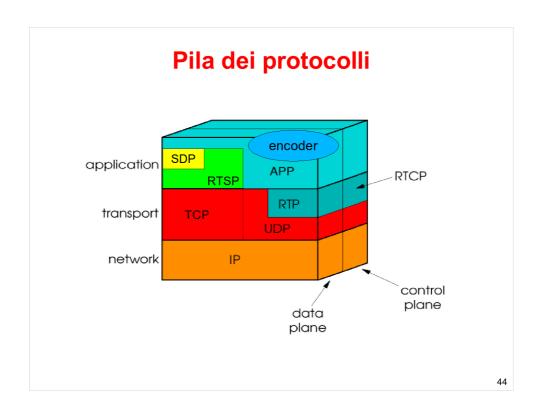
Introduzione

- Streaming=Metodo di accesso ai dati multimediali che permette di riprodurre i contenuti durante il trasferimento
- Trasferimento unidirezionale di dati multimediali
 - solo audio
 - audio e video sincronizzati
- Streaming vs File downloading
 - Nessun file da scaricare in locale (limiti di memoria)
 - Fruizione istantanea
- I contenuti audio e video possono essere
 - live --> compressione in real-time
 - memorizzati --> pre-compressi

Sessione di streaming

Definizione:

"Scelgo il brano (audio/video) XYZ da una lista, eseguo il comando PLAY. Durante l'esecuzione posso dare i comandi PAUSE oppure andare avanti/indietro nel brano. Alla fine do il comando STOP"


41

Stato della sessione

- La sessione di streaming è associata allo allo stato della trasmissione
 - che brano si sta trasmettendo
 - in che punto temporale del brano ci si trova
 - evoluzione possibile dei comandi:
 - PLAY --> PAUSE --> STOP:
 - PLAY --> PAUSE --> AVANTI
 - sequenze proibite
 - PLAY --> STOP
 - PLAY --> AVANTI

Problematiche

- Descrizione del brano per creare una lista all'utente
- Comandare il trasmettitore affinche' esegua i comandi PLAY, PAUSE, AVANTI/INDIETRO, STOP
- Trasmissione dei dati multimediali
 - distinzione tra audio e video
 - distinzione tra formati di compressione
 - sincronizzazione tra audio e video
- [opzionale] Trasmissione in senso contrario di statistiche sulla Qualita' del Servizio
 - ack
 - packet loss rate
 - delay/jitter

Pila dei protocolli

- Distinzione tra
 - data plane per la trasmissione dei contenuti
 - control plane per il controllo e il monitoraggio della trasmissione dati

Livello Rete:

- IP si occupa del routing (data plane)
- ICMP si occupa di comunicare le anomalie (control plane)

45

Pila dei Protocolli (2)

Livello Trasporto:

- TCP, UDP si occupano dell'assegnazione trasmissioniprocessi all'interno di trasmettitore e ricevitore
- Real-time Transport Protocol (RTP) si appoggia a UDP e trasmette i contenuti multimediali (data plane)
- RTP Control Protocol (RTCP) fornisce servizi a supporto della trasmissione multimediale (control plane)

Pila dei Protocolli (3)

Livello Applicazione:

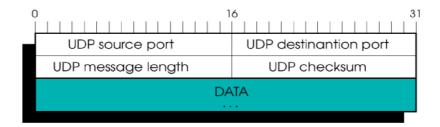
- L'encoder audio/video genera i dati da mettere nel payload RTP
- Real-Time Streaming Protocol (RTSP) si appoggia a TCP e gestisce la sessione di streaming
 - RTSP sta allo streaming come HTTP sta al Web
- Session Description Protocol (SDP) è usato per descrivere il tipo di contenuto multimediale
 - può essere trasmesso sia su RTSP che su HTTP

47

Funzioni e livelli di rete coinvolti

Operazione	Applicazione	Trasporto
Richiesta	HTTP, RTSP	ТСР
Accesso e configurazione	RTSP	ТСР
Controllo della riproduzione	RTSP	ТСР
Trasporto e riproduzione	RTP	UDP
Controllo della QoS	RTCP	UDP

Transmission Control Protocol (TCP)


- Multiplexing degli indirizzi e delle porte
- Connesso
- Byte-oriented Stream
- Affidabile mediante ritrasmissione
- Controllo di flusso per la Qualita' del Servizio
- Mantiene il concetto di stato

Non ci interessa per la parte dati delle comunicazioni multimediali ma per la gestione della sessione di streaming

49

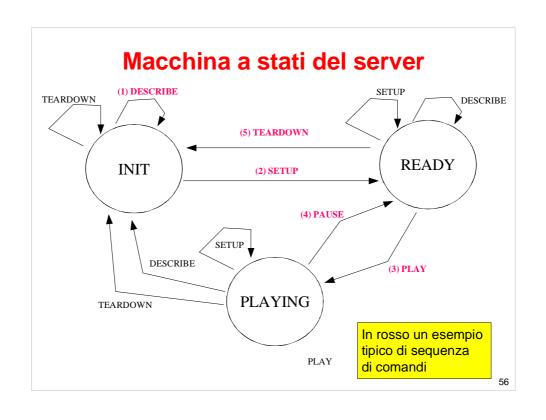
User Datagram Protocol (UDP)

- Datagram (come il sottostante IP)
- Inaffidabile e senza connessione
- Multiplexing degli indirizzi e delle porte

Real Time Streaming Protocol (RTSP)

- Un protocollo di livello applicazione per controllare
 1 o più flussi multimediali real-time
- Un protocollo estendibile in grado di aprire e gestire una sessione di streaming
- IETF Multiparty Multimedia Session Control WG
- Versioni
 - 1.RFC 2326, Henning Schulzrinne et al., Apr. 1998
 - 2.draft-ietf-mmusic-rfc2326bis-13, Giugno 2006

RTSP: caratteristiche


- In teoria dipendente dal protocollo di trasporto
 - RTSP su UDP
 - RTSP su TCP
- In pratica usato solo su TCP
- Protocollo testuale (come HTTP)
- Supporto nativo per RTP
- Mantiene lo stato della sessione
- Gestione della riproduzione del brano multimediale (funzioni "telecomando")

53

Stati, metodi, sintassi

- Possibili stati della sessione
 - Init, Ready, Play, Record
- Metodi (operazioni) possibili
 - Describe, Pause, Play, Record, Setup, Teardown
- Sintassi delle informazioni
 - Session Description Protocol (SDP)
 - RFC 2327, RFC 3266


```
DESCRIBE
DESCRIBE rtsp://bart/extra/Server_RTSP/file/prova.wav RTSP/1.0
CSeq: 1
Accept: application/sdp
Bandwidth: 14000
                                                                   Client
 Accept-Language: en-US
 User-Agent: QTS (qtver=4.1;os=Windows 98 )
RTSP/1.0 200 OK
 CSeq: 1
 Server: RTSP-Reference/0.4alpha
 Date: Fri, 09 Jun 2000 12:57:50 GMT
 Content-Type: application/sdp
 Content-Base: rtsp://bart/usr/rtsp_ref/file/rtsp.wav
 Content-Length: 270
                                                                   Server
 c=IN IP4 10.0.0.2
 s=RTSP Session
 i=An Example of RTSP Session Usage
 u=rtsp://bart/usr/rtsp_ref/file/
 m=audio 0 RTP/AVP 96
                                             Formato SDP
 a=rtpmap:96 L8/22048/1
 a=control:TrackID=1
 a=MaxBitRate:176400
 a=MaxPktSize:1024
 a=range:npt=0-262.243000
 a=TypeSpecificData:"AAEAAQAAViIACAAB"
                                                                                  57
```

SETUP rtsp://bart/usr/rtsp_ref/file/TrackID=1 RTSP/1.0 CSeq: 2 Transport: RTP/AVP;unicast;client_port=6970-6971 User-Agent: QTS (qtver=4.1;os=Windows 98) Accept-Language: en-US RTSP/1.0 200 OK CSeq: 2 Date: Fri, 09 Jun 2000 12:57:51 GMT Server: RTSP-Reference/0.4alpha Session: 46068 Transport: RTP/AVP;unicast;client_port=6970-6971;server_port=6970-6971

PLAY

PLAY rtsp://bart/extra/Server_RTSP/file/prova.wav RTSP/1.0

CSeq: 3

Range: npt=0.000000-262.243333

Session: 46068 User-Agent: QTS (qtver=4.1;os=Windows 98)

RTSP/1.0 200 OK CSeq: 3.Date: Fri, 09 Jun 2000 12:57:51 GMT Server: RTSP-Reference/0.4alpha

Session: 46068 RTP-Info: url=trackID=1;seq=29953;rtptime=5475

Client

Server

59

TEARDOWN

TEARDOWN rtsp://bart/extra/Server_RTSP/file/prova.wav RTSP/1.0

Session: 46068

User-Agent: QTS (qtver=4.1;os=Windows 98)

Client

RTSP/1.0 200 OK

CSeq: 4

Date: Fri, 09 Jun 2000 12:57:57 GMT

Server