Data-intensive computing systems

Basic Algorithm Design Patterns

University of Verona
Computer Science Department

Damiano Carra

Acknowledgements

☐ Credits
 - Part of the course material is based on slides provided by the following authors
 • Pietro Michiardi, Jimmy Lin
Algorithm Design

- Developing algorithms involve:
 - Preparing the input data
 - Implement the mapper and the reducer
 - Optionally, design the combiner and the partitioner

- How to recast existing algorithms in MapReduce?
 - It is not always obvious how to express algorithms
 - Data structures play an important role
 - Optimization is hard
 - The designer needs to “bend” the framework

- Learn by examples
 - “Design patterns”
 - Synchronization is perhaps the most tricky aspect

Algorithm Design (cont’d)

- Aspects that are not under the control of the designer
 - Where a mapper or reducer will run
 - When a mapper or reducer begins or finishes
 - Which input key-value pairs are processed by a specific mapper
 - Which intermediate key-value pairs are processed by a specific reducer

- Aspects that can be controlled
 - Construct data structures as keys and values
 - Execute user-specified initialization and termination code for mappers and reducers
 - Preserve state across multiple input and intermediate keys in mappers and reducers
 - Control the sort order of intermediate keys, and therefore the order in which a reducer will encounter particular keys
 - Control the partitioning of the key space, and therefore the set of keys that will be encountered by a particular reducer
MapReduce jobs can be complex
- Many algorithms cannot be easily expressed as a single MapReduce job
- Decompose complex algorithms into a sequence of jobs
 - Requires orchestrating data so that the output of one job becomes the input to the next
- Iterative algorithms require an external driver to check for convergence

Basic design patterns
- Local Aggregation
- Pairs and Stripes
- Relative frequencies
- Inverted indexing
Local aggregation

- Between the Map and the Reduce phase, there is the Shuffle phase
 - Transfer over the network the intermediate results from the processes that produced them to those that consume them
 - Network and disk latencies are expensive
 - Reducing the amount of intermediate data translates into algorithmic efficiency

- We have already talked about
 - Combiners
 - In-Mapper Combiners
 - In-Memory Combiners

In-Mapper Combiners: example

```java
1: class Mapper
2:   method Map(docid a, doc d)
3:     H ← new AssociativeArray
4:     for all term t ∈ doc d do
5:         H{t} ← H{t} + 1
6:     for all term t ∈ H do
7:         EMIT(term t, count H{t})
```

▷ Tally counts for entire document
In-Memory Combiners: example

1: class Mapper
2: method INITIALIZE
3: H ← new AssociativeArray
4: method Map(docid a, doc d)
5: for all term t ∈ doc d do
6: H{t} ← H{t} + 1
7: method Close
8: for all term t ∈ H do
9: Emit(term t, count H{t})

> Tally counts across documents

Algorithmic correctness with local aggregation

- Example
 - We have a large dataset where input keys are strings and input values are integers
 - We wish to compute the mean of all integers associated with the same key
 - In practice: the dataset can be a log from a website, where the keys are user IDs and values are some measure of activity

- Next, a baseline approach
 - We use an identity mapper, which groups and sorts appropriately input key-value paris
 - Reducers keep track of running sum and the number of integers encountered
 - The mean is emitted as the output of the reducer, with the input string as the key
Example: basic MapReduce to compute the mean of values

```java
1: class Mapper
2:   method Map(string t, integer r)
3:     Emit(string t, integer r)
```

```java
1: class Reducer
2:   method Reduce(string t, integers [r_1, r_2, \ldots])
3:     sum ← 0
4:     cnt ← 0
5:     for all integer r ∈ integers [r_1, r_2, \ldots] do
6:       sum ← sum + r
7:       cnt ← cnt + 1
8:     r_{avg} ← sum/cnt
9:     Emit(string t, integer r_{avg})
```

Using the combiners

- **Note:** operations are not distributive
 - $\text{Mean}(1, 2, 3, 4, 5) \neq \text{Mean}(\text{Mean}(1, 2), \text{Mean}(3, 4, 5))$
 - Hence: a combiner cannot output partial means and hope that the reducer will compute the correct final mean

- **Next, a failed attempt at solving the problem**
 - The combiner partially aggregates results by separating the components to arrive at the mean
 - The sum and the count of elements are packaged into a pair
 - Using the same input string, the combiner emits the pair
Example: **Wrong** use of combiners

```java
1: class Mapper
2:   method MAP(string t, integer r)
3:     EMIT(string t, integer r)

1: class Combiner
2:   method Combine(string t, integers [r1, r2, ...])
3:     sum ← 0
4:     cnt ← 0
5:     for all integer r ∈ integers [r1, r2, ...] do
6:       sum ← sum + r
7:       cnt ← cnt + 1
8:     EMIT(string t, pair (sum, cnt))  // Separate sum and count

1: class Reducer
2:   method Reduce(string t, pairs [(s1, c1), (s2, c2), ...])
3:     sum ← 0
4:     cnt ← 0
5:     for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2), ...] do
6:       sum ← sum + s
7:       cnt ← cnt + c
8:     r_avg ← sum/cnt
9:     EMIT(string t, integer r_avg)
```

Wrong use of combiners

- What’s wrong with the previous approach?
 - Trivially, the input/output keys are not correct
 - Remember that combiners are optimizations, the algorithm should work even when “removing” them

- Executing the code omitting the combiner phase
 - The output value type of the mapper is integer
 - The reducer expects to receive a list of integers
 - Instead, we make it expect a list of pairs

- Next, a correct implementation of the combiner
 - Note: the reducer is similar to the combiner!
 - Exercise: verify the correctness
Example: Correct use of combiners

1: class Mapper
2: method Map(string t, integer r)
3: Emit(string t, pair (r, 1))

1: class Combiner
2: method Combine(string t, pairs [(s_1, c_1), (s_2, c_2) ...])
3: sum ← 0
4: cnt ← 0
5: for all pair (s, c) ∈ pairs [(s_1, c_1), (s_2, c_2) ...] do
6: sum ← sum + s
7: cnt ← cnt + c
8: Emit(string t, pair (sum, cnt))

1: class Reducer
2: method Reduce(string t, pairs [(s_1, c_1), (s_2, c_2) ...])
3: sum ← 0
4: cnt ← 0
5: for all pair (s, c) ∈ pairs [(s_1, c_1), (s_2, c_2) ...] do
6: sum ← sum + s
7: cnt ← cnt + c
8: r_avg ← sum/cnt
9: Emit(string t, integer r_avg)

Using in-memory combining

- Inside the mapper, the partial sums and counts are held in memory (across inputs)
- Intermediate values are emitted only after the entire input split is processed
- Similarly to before, the output value is a pair

1: class Mapper
2: method Initialize
3: S ← new AssociativeArray
4: C ← new AssociativeArray
5: method Map(string t, integer r)
6: S{t} ← S{t} + r
7: C{t} ← C{t} + 1
8: method Close
9: for all term t ∈ S do
10: Emit(term t, pair (S{t}, C{t})))
Pairs and stripes

A common approach in MapReduce: build complex keys
- Data necessary for a computation are naturally brought together by the framework

Two basic techniques:
- Pairs: similar to the example on the average
- Stripes: uses in-mapper memory data structures

Next, we focus on a particular problem that benefits from these two methods
Problem statement

- Building word co-occurrence matrices for large corpora
 - The co-occurrence matrix of a corpus is a square $n \times n$ matrix
 - n is the number of unique words (i.e., the vocabulary size)
 - A cell m_{ij} contains the number of times the word w_i co-occurs with word w_j within a specific context
 - Context: a sentence, a paragraph a document or a window of m words
 - NOTE: the matrix may be symmetric in some cases

- Motivation
 - This problem is a basic building block for more complex operations
 - Estimating the distribution of discrete joint events from a large number of observations
 - Similar problem in other domains:
 - Customers who buy this tend to also buy that

Observations

- Space requirements
 - Clearly, the space requirement is $O(n^2)$, where n is the size of the vocabulary
 - For real-world (English) corpora n can be hundreds of thousands of words, or even billion of worlds

- So what’s the problem?
 - If the matrix can fit in the memory of a single machine, then just use whatever naive implementation
 - Instead, if the matrix is bigger than the available memory, then paging would kick in, and any naive implementation would break
Word co-occurrence: the Pairs approach

Input to the problem: Key-value pairs in the form of a docid and a doc

- The mapper:
 - Processes each input document
 - Emits key-value pairs with:
 - Each co-occurring word pair as the key
 - The integer one (the count) as the value
 - This is done with two nested loops:
 - The outer loop iterates over all words
 - The inner loop iterates over all neighbors

- The reducer:
 - Receives pairs relative to co-occurring words
 - Computes an absolute count of the joint event
 - Emits the pair and the count as the final key-value output
 - Basically reducers emit the cells of the matrix

```
1: class Mapper
2:    method MAP(docid a, doc d)
3:        for all term w ∈ doc d do
4:            for all term u ∈ Neighbors(w) do
5:                Emit((w, u), count 1)  // Emit count for each co-occurrence

1: class Reducer
2:    method REDUCE(pair p, counts [c1, c2, ...])
3:        s ← 0
4:        for all count c ∈ counts [c1, c2, ...] do
5:            s ← s + c  // Sum co-occurrence counts
6:        Emit((p, count s))
```
Word co-occurrence: the Stripes approach

Input to the problem: Key-value pairs in the form of a docid and a doc

- The mapper:
 - Same two nested loops structure as before
 - Co-occurrence information is first stored in an associative array
 - Emit key-value pairs with words as keys and the corresponding arrays as values

- The reducer:
 - Receives all associative arrays related to the same word
 - Performs an element-wise sum of all associative arrays with the same key
 - Emits key-value output in the form of word, associative array
 - Basically, reducers emit rows of the co-occurrence matrix

```
1: class Mapper
2:     method Map(docid a, doc d)
3:         for all term w ∈ doc d do
4:             H ← new AssociativeArray
5:             for all term u ∈ Neighbors(w) do
6:                 H{u} ← H{u} + 1  ▷ Tally words co-occurring with w
7:             Emit(Term w, Stripe H)

1: class Reducer
2:     method Reduce(term w, stripes [H₁, H₂, H₃, ...])
3:         H_f ← new AssociativeArray
4:         for all stripe H ∈ stripes [H₁, H₂, H₃, ...] do
5:             Sum(H_f, H)  ▷ Element-wise sum
6:         Emit(term w, stripe H_f)
```
Pairs and Stripes, a comparison

- The pairs approach
 - Generates a large number of key-value pairs (also intermediate)
 - The benefit from combiners is limited, as it is less likely for a mapper to process multiple occurrences of a word
 - Does not suffer from memory paging problems

- The pairs approach
 - More compact
 - Generates fewer and shorted intermediate keys
 - The framework has less sorting to do
 - The values are more complex and have serialization/deserialization overhead
 - Greatly benefits from combiners, as the key space is the vocabulary
 - Suffers from memory paging problems, if not properly engineered

Relative frequencies
“Relative” Co-occurrence matrix

- Problem statement
 - Similar problem as before, same matrix
 - Instead of absolute counts, we take into consideration the fact that some words appear more frequently than others
 - Word w_i may co-occur frequently with word w_j simply because one of the two is very common
 - We need to convert absolute counts to relative frequencies $f(w_j | w_i)$
 - What proportion of the time does w_j appear in the context of w_i?

 - Formally, we compute:
 $$f(w_j | w_i) = \frac{N(w_i, w_j)}{\sum_{w'} N(w_i, w')}$$
 - $N(\cdot, \cdot)$ is the number of times a co-occurring word pair is observed
 - The denominator is called the marginal

Computing relative frequencies

- The stripes approach
 - In the reducer, the counts of all words that co-occur with the conditioning variable (w_j) are available in the associative array
 - Hence, the sum of all those counts gives the marginal
 - Then we divide the the joint counts by the marginal and we’re done

- The pairs approach
 - The reducer receives the pair (w_i, w_j) and the count
 - From this information alone it is not possible to compute $f(w_j | w_i)$
 - Fortunately, as for the mapper, also the reducer can preserve state across multiple keys
 - We can buffer in memory all the words that co-occur with w_i and their counts
 - This is basically building the associative array in the stripes method
Computing relative frequencies: a basic approach

- We must define the sort order of the pair
 - In this way, the keys are first sorted by the left word, and then by the right word (in the pair)
 - Hence, we can detect if all pairs associated with the word we are conditioning on \((w_i)\) have been seen
 - At this point, we can use the in-memory buffer, compute the relative frequencies and emit

- We must define an appropriate partitioner
 - The default partitioner is based on the hash value of the intermediate key, modulo the number of reducers
 - For a complex key, the raw byte representation is used to compute the hash value
 - Hence, there is no guarantee that the pair (dog, aardvark) and (dog, zebra) are sent to the same reducer
 - What we want is that all pairs with the same left word are sent to the same reducer

Computing relative frequencies: order inversion

- The key is to properly sequence data presented to reducers
 - If it were possible to compute the marginal in the reducer before processing the join counts, the reducer could simply divide the joint counts received from mappers by the marginal
 - The notion of “before” and “after” can be captured in the ordering of key-value pairs
 - The programmer can define the sort order of keys so that data needed earlier is presented to the reducer before data that is needed later
Computing relative frequencies: order inversion

- Recall that mappers emit pairs of co-occurring words as keys
- The mapper:
 - additionally emits a “special” key of the form \((w_i, *)\)
 - The value associated to the special key is one, that represents the contribution of the word pair to the marginal
 - Using combiners, these partial marginal counts will be aggregated before being sent to the reducers
- The reducer:
 - We must make sure that the special key-value pairs are processed before any other key-value pairs where the left word is \(w_i\)
 - We also need to modify the partitioner as before, i.e., it would take into account only the first word

Computing relative frequencies: order inversion

- Memory requirements:
 - Minimal, because only the marginal (an integer) needs to be stored
 - No buffering of individual co-occurring word
 - No scalability bottleneck

- Key ingredients for order inversion
 - Emit a special key-value pair to capture the marginal
 - Control the sort order of the intermediate key, so that the special key-value pair is processed first
 - Define a custom partitioner for routing intermediate key-value pairs
 - Preserve state across multiple keys in the reducer
Inverted indexing

Quintessential large-data problem: Web search
- A web crawler gathers the Web objects and store them
- Inverted indexing
 - Given a term \(t \) → Retrieve relevant web objects that contains \(t \)
- Document ranking
 - Sort the relevant web objects

Here we focus on the inverted indexing
- For each term \(t \), the output is a list of documents and the number of occurrences of the term \(t \)
Inverted indexing: visual solution

- **Mapper**
 - Doc 1: one fish, two fish
 - fish: $d_1 = 2$, $d_2 = 1$, $d_3 = 1$
 - one: $d_1 = 1$
 - two: $d_1 = 1$

 - Doc 2: red fish, blue fish
 - blue: $d_1 = 1$
 - fish: $d_2 = 2$
 - red: $d_1 = 1$

 - Doc 3: one red bird
 - bird: $d_1 = 1$
 - one: $d_1 = 1$
 - red: $d_1 = 1$

- **Shuffle and Sort: aggregate values by keys**

- **Reducer**
 - Doc 1:
 - fish: $\sigma_1 = 2$
 - one: $\sigma_1 = 1$
 - two: $\sigma_1 = 1$

 - Doc 2:
 - blue: $\sigma_2 = 1$
 - fish: $\sigma_2 = 2$
 - red: $\sigma_2 = 1$

 - Doc 3:
 - bird: $\sigma_2 = 1$
 - blue: $\sigma_2 = 1$
 - red: $\sigma_2 = 1$, $\sigma_3 = 1$