Chapter 4

The Medium Access Control Sublayer

The Channel Allocation Problem

- The channel allocation problem concerns broadcast channels
- Static Channel Allocation in LANs and MANs
- Dynamic Channel Allocation in LANs and MANs

• If channel is busy, wait for a random time and try again

Collision Detection Protocols (CSMA/CD)

- Cancel transmission upon collision detection to save bandwidth
- Collisions are detected by listening the received signal
- How much time is required to detect a collision?
 - The time needed for a signal to arrive from a station to another and back (the time a distortion on the last bit is propagated back to the transmitter)

8

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

	F	ast Ethe	rnet
Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs
	The orig	ginal fast Ethe	rnet cabling.

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Wireless LANs

- The 802.11 Protocol Stack
- The 802.11 Physical Layer
- The 802.11 MAC Sublayer Protocol
- The 802.11 Frame Structure
- Services

802.11 Services

Intracell Services

- Authentication
- Deauthentication
- Privacy
- Data Delivery

Broadband Wireless

- Comparison of 802.11 and 802.16
- The 802.16 Protocol Stack
- The 802.16 Physical Layer
- The 802.16 MAC Sublayer Protocol
- The 802.16 Frame Structure

Name	Description Procedures for link management	
Generic access		
Service discovery	Protocol for discovering offered services	
Serial port	Replacement for a serial port cable	
Generic object exchange	Defines client-server relationship for object movement	
LAN access	Protocol between a mobile computer and a fixed LAN	
Dial-up networking	Allows a notebook computer to call via a mobile phone	
Fax	Allows a mobile fax machine to talk to a mobile phone	
Cordless telephony	Connects a handset and its local base station	
Intercom	Digital walkie-talkie	
Headset	Intended for hands-free voice communication	
Object push	Provides a way to exchange simple objects	
File transfer	Provides a more general file transfer facility	
Synchronization	Permits a PDA to synchronize with another computer	

Data Link Layer Switching

- Bridges from 802.x to 802.y
- Local Internetworking
- Spanning Tree Bridges
- Remote Bridges
- Repeaters, Hubs, Bridges, Switches, Routers, Gateways
- Virtual LANs

Method	Description
FDM	Dedicate a frequency band to each station
WDM	A dynamic FDM scheme for fiber
TDM	Dedicate a time slot to each station
Pure ALOHA	Unsynchronized transmission at any instant
Slotted ALOHA	Random transmission in well-defined time slots
1-persistent CSMA	Standard carrier sense multiple access
Nonpersistent CSMA	Random delay when channel is sensed busy
P-persistent CSMA	CSMA, but with a probability of p of persisting
CSMA/CD	CSMA, but abort on detecting a collision
Bit map	Round robin scheduling using a bit map
Binary countdown	Highest numbered ready station goes next
Tree walk	Reduced contention by selective enabling
MACA, MACAW	Wireless LAN protocols
Ethernet	CSMA/CD with binary exponential backoff
FHSS	Frequency hopping spread spectrum
DSSS	Direct sequence spread spectrum
CSMA/CA	Carrier sense multiple access with collision avoidate