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Module 6: Process SynchronizationModule 6: Process Synchronization

 Background
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 Synchronization Hardware
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples 
 Atomic Transactions
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BackgroundBackground

 Concurrent access to shared data may result in data 
inconsistency

 Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. We 
can do so by having an integer count that keeps track of 
the number of full buffers.  Initially, count is set to 0. It is 
incremented by the producer after it produces a new 
buffer and is decremented by the consumer after it 
consumes a buffer.
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Producer Producer 

while (true) 

     

                               /* produce an item and put in nextProduced

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}   



6.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ConsumerConsumer

    while (1) 

      {

while (count == 0)

; // do nothing

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/*  consume the item in nextConsumed

}
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Race ConditionRace Condition

 count++ could be implemented as

     register1 = count
     register1 = register1 + 1
     count = register1

 count-- could be implemented as

     register2 = count
     register2 = register2 - 1
     count = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count   {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = count   {register2 = 5} 
S3: consumer execute register2 = register2 - 1   {register2 = 4} 
S4: producer execute count = register1   {count = 6 } 
S5: consumer execute count = register2   {count = 4}
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Solution to Critical-Section ProblemSolution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, 
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical section, 
then the selection of the processes that will enter the critical 
section next cannot be postponed indefinitely

3. Bounded Waiting -  A bound must exist on the number of times 
that other processes are allowed to enter their critical sections 
after a process has made a request to enter its critical section and 
before that request is granted

 Assume that each process executes at a nonzero speed 

 No assumption concerning relative speed of the N processes
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Peterson’s SolutionPeterson’s Solution

 Two process solution
 Assume that the LOAD and STORE instructions are atomic; 

that is, cannot be interrupted.
 The two processes share two variables:

 int turn; 
 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the 
critical section.  

 The flag array is used to indicate if a process is ready to 
enter the critical section. flag[i] = true implies that process Pi 
is ready!
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Algorithm for Process Algorithm for Process PPii

do {

               flag[i] = TRUE;

               turn = j;

               while ( flag[j] && turn == j);

                     CRITICAL SECTION

               flag[i] = FALSE;

                       REMAINDER SECTION

          } while (TRUE);
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Synchronization HardwareSynchronization Hardware

 Many systems provide hardware support for critical section 
code

 Uniprocessors – could disable interrupts
 Currently running code would execute without 

preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware 

instructions
 Atomic = non-interruptable

 Either test memory word and set value
 Or swap contents of two memory words
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TestAndndSet Instruction TestAndndSet Instruction 

 Definition:

         boolean TestAndSet (boolean *target)

          {

               boolean rv = *target;

               *target = TRUE;

               return rv:

          }
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Solution using TestAndSetSolution using TestAndSet

 Shared boolean variable lock., initialized to false.
 Solution:

          do {

             while ( TestAndSet (&lock ))

                        ;   /* do nothing

                 //    critical section

             lock = FALSE;

                 //      remainder section 

           } while ( TRUE);
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Swap  InstructionSwap  Instruction

 Definition:

         void Swap (boolean *a, boolean *b)

          {

               boolean temp = *a;

               *a = *b;

               *b = temp:

          }
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Solution using SwapSolution using Swap

 Shared Boolean variable lock initialized to FALSE; Each 
process has a local Boolean variable key.

 Solution:

          do {

                key = TRUE;

                 while ( key == TRUE)

                       Swap (&lock, &key );

      

                         //    critical section

                  lock = FALSE;

                       //      remainder section 

               } while ( TRUE);
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SemaphoreSemaphore

 Synchronization tool that does not require busy waiting 
 Semaphore S – integer variable
 Two standard operations modify S: wait() and signal()

 Originally called P() and V()
 Less complicated
 Can only be accessed via two indivisible (atomic) operations

 wait (S) { 

           while S <= 0

          ; // no-op

              S--;

      }
 signal (S) { 

        S++;

     }
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Semaphore as General Synchronization ToolSemaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an 
unrestricted domain

 Binary semaphore – integer value can range only between 0 
and 1; can be simpler to implement

 Also known as mutex locks

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

 Semaphore S;    //  initialized to 1

 wait (S);

            Critical Section

     signal (S);
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Semaphore ImplementationSemaphore Implementation

 Must guarantee that no two processes can execute wait () and 
signal () on the same semaphore at the same time

 Thus, implementation becomes the critical section problem 
where the wait and signal code are placed in the crtical section.

 Could now have busy waiting in critical section 
implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections 
and therefore this is not a good solution.
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Semaphore Implementation with no Busy waitingSemaphore Implementation with no Busy waiting  

 With each semaphore there is an associated waiting queue. 
Each entry in a waiting queue has two data items:

  value (of type integer)

  pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the      
appropriate waiting queue.

 wakeup – remove one of processes in the waiting queue 
and place it in the ready queue.
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Semaphore Implementation with no Busy waitingSemaphore Implementation with no Busy waiting  (Cont.)(Cont.)

 Implementation of wait:

                        wait (S){ 
                          value--;
                          if (value < 0) { 

              add this process to waiting queue
               block();  }

                         }

 Implementation of signal:

                        Signal (S){ 
                             value++;
                              if (value <= 0) { 

                 remove a process P from the waiting queue
                  wakeup(P);  }

                        }
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Deadlock and StarvationDeadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

    wait (S);                                      wait (Q);

      wait (Q);                                      wait (S);

. .

. .

. .

        signal  (S);                                        signal (Q);

        signal (Q);                                        signal (S);

 Starvation  – indefinite blocking.  A process may never be removed 
from the semaphore queue in which it is suspended.
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Classical Problems of SynchronizationClassical Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem
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Bounded-Buffer ProblemBounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.
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Bounded Buffer Problem (Cont.)Bounded Buffer Problem (Cont.)

 The structure of the producer process

           do {

                     //   produce an item

               wait (empty);

               wait (mutex);

                   //  add the item to the  buffer

                signal (mutex);

                signal (full);

             } while (true);
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Bounded Buffer Problem (Cont.)Bounded Buffer Problem (Cont.)

 The structure of the consumer process

           do {

               wait (full);

               wait (mutex);

                   //  remove an item from  buffer

                signal (mutex);

                signal (empty);

             

                    //  consume the removed item

           } while (true);
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Readers-Writers ProblemReaders-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any 
updates

 Writers   – can both read and write.

 Problem – allow multiple readers to read at the same time.  Only 
one single writer can access the shared data at the same time.

 Shared Data

 Data set

 Semaphore mutex initialized to 1.

 Semaphore wrt initialized to 1.

 Integer readcount initialized to 0.
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Readers-Writers Problem (Cont.)Readers-Writers Problem (Cont.)

 The structure of a writer process

        

              do  {

                     wait (wrt) ;

                

                       //    writing is performed

                     signal (wrt) ;

                } while (true)
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Readers-Writers Problem (Cont.)Readers-Writers Problem (Cont.)

 The structure of a reader process
        
              do  {
                     wait (mutex) ;
                     readcount ++ ;
                     if (readercount == 1)  wait (wrt) ;
                     signal (mutex)
                
                           // reading is performed

                     wait (mutex) ;
                     readcount  - - ;
                     if redacount  == 0)  signal (wrt) ;
                     signal (mutex) ;
                } while (true)

       



6.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dining-Philosophers ProblemDining-Philosophers Problem

 Shared data 

 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem (Cont.)Dining-Philosophers Problem (Cont.)

 The structure of Philosopher i:

Do  { 

      wait ( chopstick[i] );

 wait ( chopStick[ (i + 1) % 5] );

       //  eat

 signal ( chopstick[i] );

 signal (chopstick[ (i + 1) % 5] );

           //  think

} while (true) ;
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Problems with SemaphoresProblems with Semaphores

  Correct use of semaphore operations:

  signal (mutex)  ….  wait (mutex)

  wait (mutex)  …  wait (mutex)

  Omitting  of wait (mutex) or signal (mutex) (or both)
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MonitorsMonitors

 A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

 Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

     Initialization code ( ….) { … }

…

}

}
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Schematic view of a MonitorSchematic view of a Monitor
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Condition VariablesCondition Variables

 condition x, y;

 Two operations on a condition variable:

 x.wait ()  – a process that invokes the operation is 

                      suspended.

 x.signal () – resumes one of processes (if any) tha

                         invoked x.wait ()
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  Monitor with Condition VariablesMonitor with Condition Variables
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Solution to Dining PhilosophersSolution to Dining Philosophers

monitor DP
   { 

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) { 
       state[i] = HUNGRY;
       test(i);
       if (state[i] != EATING) self [i].wait;
}

       void putdown (int i) { 
       state[i] = THINKING;

                   // test left and right neighbors
        test((i + 4) % 5);
        test((i + 1) % 5);

        }
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Solution to Dining Philosophers (cont)Solution to Dining Philosophers (cont)

void test (int i) { 
        if ( (state[(i + 4) % 5] != EATING) &&
        (state[i] == HUNGRY) &&
        (state[(i + 1) % 5] != EATING) ) { 
             state[i] = EATING ;

    self[i].signal () ;
         }
 }

       initialization_code() { 
       for (int i = 0; i < 5; i++)
       state[i] = THINKING;
}

}
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Synchronization ExamplesSynchronization Examples

 Solaris

 Windows XP

 Linux

 Pthreads
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Solaris SynchronizationSolaris Synchronization

 Implements a variety of locks to support multitasking, 
multithreading (including real-time threads), and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from 
short code segments

 Uses condition variables and readers-writers locks when longer 
sections of code need access to data

 Uses turnstiles to order the list of threads waiting to acquire either 
an adaptive mutex or reader-writer lock
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Windows XP SynchronizationWindows XP Synchronization

 Uses interrupt masks to protect access to global resources on 
uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Also provides dispatcher objects which may act as either mutexes 
and semaphores

 Dispatcher objects may also provide events

 An event acts much like a condition variable
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Linux SynchronizationLinux Synchronization

 Linux:

 disables interrupts to implement short critical sections

 Linux provides:

 semaphores

 spin locks
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Pthreads SynchronizationPthreads Synchronization

 Pthreads API is OS-independent

 It provides:

 mutex locks

 condition variables

 Non-portable extensions include:

 read-write locks

 spin locks
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