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Objectives

B To describe the details of implementing local file systems and
directory structures

B To describe the implementation of remote file systems
B To discuss block allocation and free-block algorithms and trade-offs
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File-System Structure

B File structure
® Logical storage unit
® Collection of related information
B File system resides on secondary storage (disks)

File system organized into layers

B File control block — storage structure consisting of information
about a file
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Layered File System
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A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks
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In-Memory File System Structures

B The following figure illustrates the necessary file system structures
provided by the operating systems.

B Figure 12-3(a) refers to opening a file.

B Figure 12-3(b) refers to reading a file.
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In-Memory File System Structures
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Virtual File Systems

B Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

B VFS allows the same system call interface (the API) to be used for
different types of file systems.

B The API is to the VFS interface, rather than any specific type of file
system.

R b
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Schematic View of Virtual File System
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Directory Implementation

B Linear list of file names with pointer to the data blocks.
® simple to program
® time-consuming to execute

M Hash Table - linear list with hash data structure.

® decreases directory search time

® collisions — situations where two file names hash to the same
location

® fixed size
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Allocation Methods

B An allocation method refers to how disk blocks are allocated for
files:

B Contiguous allocation

B Linked allocation

B |ndexed allocation
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Contiguous Allocation

B Each file occupies a set of contiguous blocks on the disk

B Simple — only starting location (block #) and length (number
of blocks) are required

B Random access
B \Wasteful of space (dynamic storage-allocation problem)

B Files cannot grow

fm 2 ; S V‘ ‘ »
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Contiguous Allocation

B Mapping from logical to physical

~Q

LA/512

AN
R

Block to be accessed = ! + starting address
Displacement into block =R

Operating System Concepts 11.14



Contiguous Allocation of Disk Space

directory
ol file start length
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al ] 5[] 6L 7[] mail 19 6
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Extent-Based Systems

B Many newer file systems (l.e. Veritas File System) use a modified
contiguous allocation scheme

B Extent-based file systems allocate disk blocks in extents

B An extent is a contiguous block of disks
® Extents are allocated for file allocation
® A file consists of one or more extents.

o | ,; (
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Linked Allocation

B Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

block

pointer

vt "
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Linked Allocation (Cont.)

B Simple — need only starting address
B Free-space management system — no waste of space
B No random access
B Mapping
Q
LNSll\R

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
Displacement into block =R + 1

File-allocation table (FAT) — disk-space allocation used by MS-DOS
and OS/2.
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Linked Allocation
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File-Allocation Table

|_

start block

no. of disk blocks -1
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Indexed Allocation

B Brings all pointers together into the index block.
B | ogical view.

I— I:I
—>|:|
> I:I

index table
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Example of Indexed Allocation

directory
file index block
jeep 19
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Indexed Allocation (Cont.)

Need index table
Random access

Dynamic access without external fragmentation, but have
overhead of index block.

B Mapping from logical to physical in a file of maximum size of
256K words and block size of 512 words. We need only 1
block for index table.

Q

N
R

LA/512

Q = displacement into index table
R = displacement into block
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Indexed Allocation — Mapping (Cont.)

B Mapping from logical to physical in a file of unbounded
length (block size of 512 words).

B [inked scheme — Link blocks of index table (no limit on
size).

Q,
LA / (512 x 511)<
R

1

Q, = block of index table
R, is used as follows:

R, /512
RZ

Q, = displacement into block of index table
R, displacement into block of file:
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Indexed Allocation — Mapping (Cont.)

B Two-level index (maximum file size is 5123)

Q,
LA / (512 x 512)<
R

1

Q, = displacement into outer-index
R, is used as follows:

R, /512
RZ

Q, = displacement into block of index table
R, displacement into block of file:
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Indexed Allocation — Mapping (Cont.)

- I B
/ \
\ \\
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Combined Scheme: UNIX (4K bytes per block)

mode

owners (2)

timestamps (3) o
—> data

size block count

— data

» data
direct blocks 7 :

= ——> data

«T—> data
single indirect ——»{ o E > data

= ——» data S

double indirect . » data
triple indirect - > 2 » data
z » data
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Free-Space Management

B Bit vector (n blocks)
O 1 2 n-1

. 0 O block]i] free
bit[i] =
1 O block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit
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Free-Space Management (Cont.)

B Bit map requires extra space
® Example:
block size = 22 bytes
disk size = 2%° bytes (1 gigabyte)
n = 230/212 = 218 pits (or 32K bytes)
B Easy to get contiguous files
B Linked list (free list)
® Cannot get contiguous space easily
® No waste of space
B Grouping
B Counting
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Free-Space Management (Cont.)

B Need to protect:
® Pointer to free list
® Bit map
» Must be kept on disk
» Copy in memory and disk may differ

» Cannot allow for block]i] to have a situation where
bit[i] = 1 in memory and bit[i] = 0 on disk

® Solution:
» Set bit[i] = 1 in disk
> Allocate blockfi]
» Set bit[i] = 1 in memory

3Ny
o N ;' -4 ,,
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Directory Implementation

B Linear list of file names with pointer to the data blocks
® simple to program
® time-consuming to execute

B Hash Table - linear list with hash data structure
® decreases directory search time

® collisions — situations where two file names hash to the same
location

® fixed size

Operating System Concepts 11.31



Operating System Concepts

free-space list head

Linked Free Space List on Disk
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Efficiency and Performance

B Efficiency dependent on:
® disk allocation and directory algorithms
® types of data kept in file’s directory entry

B Performance

® disk cache — separate section of main memory for frequently
used blocks

® free-behind and read-ahead — techniques to optimize
sequential access

® improve PC performance by dedicating section of memory as
virtual disk, or RAM disk

R b
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Page Cache

B A page cache caches pages rather than disk blocks using virtual
memory techniques

B Memory-mapped I/O uses a page cache

B Routine I/O through the file system uses the buffer (disk) cache

B This leads to the following figure
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I/0O Without a Unified Buffer Cache

/O using
read( ) and write( )

memory-mapped 1/O
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\

buffer cache

|

file system
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Unified Buffer Cache

B A unified buffer cache uses the same page cache to cache both
memory-mapped pages and ordinary file system I/O

vt "
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I/0O Using a Unified Buffer Cache

/O using
read( ) and write( )

N/

memory-mapped I/O

buffer cache

|

file system
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Recovery

B Consistency checking — compares data in directory structure with
data blocks on disk, and tries to fix inconsistencies

B Use system programs to back up data from disk to another storage
device (floppy disk, magnetic tape, other magnetic disk, optical)

B Recover lost file or disk by restoring data from backup

4 = o
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Log Structured File Systems

B | og structured (or journaling) file systems record each update to
the file system as a transaction

B All transactions are written to a log

® A transaction is considered committed once it is written to the
log
® However, the file system may not yet be updated

B The transactions in the log are asynchronously written to the file
system

® When the file system is modified, the transaction is removed
from the log

B |[f the file system crashes, all remaining transactions in the log must
still be performed
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The Sun Network File System (NFS)

B An implementation and a specification of a software system for
accessing remote files across LANs (or WANS)

B The implementation is part of the Solaris and SunOS operating
systems running on Sun workstations using an unreliable datagram
protocol (UDP/IP protocol and Ethernet
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NFS (Cont.)

B |nterconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing
among these file systems in a transparent manner

® A remote directory is mounted over a local file system directory

»  The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

® Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to
be provided

» Files in the remote directory can then be accessed in a
transparent manner

® Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory
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NFS (Cont.)

B NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network architectures;
the NFS specifications independent of these media

B This independence is achieved through the use of RPC primitives
built on top of an External Data Representation (XDR) protocol
used between two implementation-independent interfaces

B The NFS specification distinguishes between the services provided
by a mount mechanism and the actual remote-file-access services
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Three Independent File Systems

usr

local

S1:

usr

shared
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Mounting in NFS

U: U:

usr

local

(a) (b)
Mounts Cascading mounts
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NFS Mount Protocol

B Establishes initial logical connection between server and client

B Mount operation includes name of remote directory to be mounted and
name of server machine storing it

® Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

® Export list — specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

B Following a mount request that conforms to its export list, the server
returns a file handle—a key for further accesses

B File handle — a file-system identifier, and an inode number to identify
the mounted directory within the exported file system

B The mount operation changes only the user’s view and does not affect
the server side
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NFS Protocol

B Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

® searching for a file within a directory
® reading a set of directory entries

® manipulating links and directories

® accessing file attributes

® reading and writing files

B NFS servers are stateless; each request has to provide a full set of
arguments
(NFS V4 is just coming available — very different, stateful)

B Modified data must be committed to the server’s disk before results
are returned to the client (lose advantages of caching)

B The NFS protocol does not provide concurrency-control
mechanisms

/‘*»3 %
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Three Major Layers of NFS Architecture

B UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

B Virtual File System (VFS) layer — distinguishes local files from
remote ones, and local files are further distinguished according to

their file-system types

® The VFS activates file-system-specific operations to handle
local requests according to their file-system types

® Calls the NFS protocol procedures for remote requests

B NFS service layer — bottom layer of the architecture
® Implements the NFS protocol

e NERT 2 i
Vv W™
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client

system-calls interface

!

Schematic View of NFS Architecture
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NFS Path-Name Translation

B Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of component
name and directory vnode

B To make lookup faster, a directory name lookup cache on the
client’s side holds the vnodes for remote directory names

o | ,; (
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NFS Remote Operations

B Nearly one-to-one correspondence between regular UNIX system
calls and the NFS protocol RPCs (except opening and closing files)

B NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance

B File-blocks cache — when a file is opened, the kernel checks with
the remote server whether to fetch or revalidate the cached
attributes

® Cached file blocks are used only if the corresponding cached
attributes are up to date

B File-attribute cache — the attribute cache is updated whenever new
attributes arrive from the server

B Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

/‘*»3 = >
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Example: WAFL File System

B Used on Network Appliance “Filers” — distributed file system
appliances

B “Write-anywhere file layout”
B Serves up NFS, CIFS, http, ftp
B Random I/O optimized, write optimized
® NVRAM for write caching
B Similar to Berkeley Fast File System, with extensive modifications
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The WAFL File Layout

root inode
inode file
free block map free inode map file in the file system... | <
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Snapshots in WAFL

root inode

(a) Before a snapshot.

root inode new shapshot

/

blockA||B||C||D||E

(b) After a snapshot, before any blocks change

root inode new snapshot

/

block A||B||C||D||E D

(c) After block D has changed toD".
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11.02

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks
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End of Chapter 11
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