

Chapter 11: File System Chapter 11: File System
ImplementationImplementation

11.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Chapter 11: File System ImplementationChapter 11: File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

 Example: WAFL File System

11.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ObjectivesObjectives

 To describe the details of implementing local file systems and
directory structures

 To describe the implementation of remote file systems

 To discuss block allocation and free-block algorithms and trade-offs

11.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File-System StructureFile-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks)

 File system organized into layers

 File control block – storage structure consisting of information
about a file

11.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Layered File SystemLayered File System

11.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A Typical File Control BlockA Typical File Control Block

11.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

In-Memory File System StructuresIn-Memory File System Structures

 The following figure illustrates the necessary file system structures
provided by the operating systems.

 Figure 12-3(a) refers to opening a file.

 Figure 12-3(b) refers to reading a file.

11.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

In-Memory File System StructuresIn-Memory File System Structures

11.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual File SystemsVirtual File Systems

 Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

 VFS allows the same system call interface (the API) to be used for
different types of file systems.

 The API is to the VFS interface, rather than any specific type of file
system.

11.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of Virtual File SystemSchematic View of Virtual File System

11.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Directory ImplementationDirectory Implementation

 Linear list of file names with pointer to the data blocks.

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure.

 decreases directory search time

 collisions – situations where two file names hash to the same
location

 fixed size

11.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Allocation MethodsAllocation Methods

 An allocation method refers to how disk blocks are allocated for
files:

 Contiguous allocation

 Linked allocation

 Indexed allocation

11.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous AllocationContiguous Allocation

 Each file occupies a set of contiguous blocks on the disk

 Simple – only starting location (block #) and length (number
of blocks) are required

 Random access

 Wasteful of space (dynamic storage-allocation problem)

 Files cannot grow

11.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous AllocationContiguous Allocation

 Mapping from logical to physical

LA/512

Q

R

Block to be accessed = ! + starting address
Displacement into block = R

11.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation of Disk SpaceContiguous Allocation of Disk Space

11.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Extent-Based SystemsExtent-Based Systems

 Many newer file systems (I.e. Veritas File System) use a modified
contiguous allocation scheme

 Extent-based file systems allocate disk blocks in extents

 An extent is a contiguous block of disks

 Extents are allocated for file allocation

 A file consists of one or more extents.

11.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked AllocationLinked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

pointerblock =

11.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked Allocation (Cont.)Linked Allocation (Cont.)

 Simple – need only starting address

 Free-space management system – no waste of space

 No random access

 Mapping

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
Displacement into block = R + 1

File-allocation table (FAT) – disk-space allocation used by MS-DOS
and OS/2.

LA/511
Q

R

11.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked AllocationLinked Allocation

11.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File-Allocation TableFile-Allocation Table

11.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed AllocationIndexed Allocation

 Brings all pointers together into the index block.

 Logical view.

index table

11.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Indexed AllocationExample of Indexed Allocation

11.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation (Cont.)Indexed Allocation (Cont.)

 Need index table
 Random access
 Dynamic access without external fragmentation, but have

overhead of index block.
 Mapping from logical to physical in a file of maximum size of

256K words and block size of 512 words. We need only 1
block for index table.

LA/512
Q

R

Q = displacement into index table
R = displacement into block

11.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation – Mapping (Cont.)Indexed Allocation – Mapping (Cont.)

 Mapping from logical to physical in a file of unbounded
length (block size of 512 words).

 Linked scheme – Link blocks of index table (no limit on
size).

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

11.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation – Mapping (Cont.)Indexed Allocation – Mapping (Cont.)

 Two-level index (maximum file size is 5123)

LA / (512 x 512)
Q1

R1

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

11.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation – Mapping (Cont.)Indexed Allocation – Mapping (Cont.)



outer-index

index table file

11.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Combined Scheme: UNIX (4K bytes per block)Combined Scheme: UNIX (4K bytes per block)

11.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free-Space ManagementFree-Space Management

 Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =
0 ⇒ block[i] free

1 ⇒ block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

11.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free-Space Management (Cont.)Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

 Easy to get contiguous files

 Linked list (free list)

 Cannot get contiguous space easily

 No waste of space

 Grouping

 Counting

11.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free-Space Management (Cont.)Free-Space Management (Cont.)

 Need to protect:
 Pointer to free list
 Bit map

 Must be kept on disk
 Copy in memory and disk may differ
 Cannot allow for block[i] to have a situation where

bit[i] = 1 in memory and bit[i] = 0 on disk
 Solution:

 Set bit[i] = 1 in disk
 Allocate block[i]
 Set bit[i] = 1 in memory

11.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Directory ImplementationDirectory Implementation

 Linear list of file names with pointer to the data blocks

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure

 decreases directory search time

 collisions – situations where two file names hash to the same
location

 fixed size

11.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked Free Space List on DiskLinked Free Space List on Disk

11.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Efficiency and PerformanceEfficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently
used blocks

 free-behind and read-ahead – techniques to optimize
sequential access

 improve PC performance by dedicating section of memory as
virtual disk, or RAM disk

11.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page CachePage Cache

 A page cache caches pages rather than disk blocks using virtual
memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk) cache

 This leads to the following figure

11.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

I/O Without a Unified Buffer CacheI/O Without a Unified Buffer Cache

11.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Unified Buffer CacheUnified Buffer Cache

 A unified buffer cache uses the same page cache to cache both
memory-mapped pages and ordinary file system I/O

11.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

I/O Using a Unified Buffer CacheI/O Using a Unified Buffer Cache

11.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

RecoveryRecovery

 Consistency checking – compares data in directory structure with
data blocks on disk, and tries to fix inconsistencies

 Use system programs to back up data from disk to another storage
device (floppy disk, magnetic tape, other magnetic disk, optical)

 Recover lost file or disk by restoring data from backup

11.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Log Structured File SystemsLog Structured File Systems

 Log structured (or journaling) file systems record each update to
the file system as a transaction

 All transactions are written to a log
 A transaction is considered committed once it is written to the

log

 However, the file system may not yet be updated

 The transactions in the log are asynchronously written to the file
system

 When the file system is modified, the transaction is removed
from the log

 If the file system crashes, all remaining transactions in the log must
still be performed

11.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Sun Network File System (NFS)The Sun Network File System (NFS)

 An implementation and a specification of a software system for
accessing remote files across LANs (or WANs)

 The implementation is part of the Solaris and SunOS operating
systems running on Sun workstations using an unreliable datagram
protocol (UDP/IP protocol and Ethernet

11.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS (Cont.)NFS (Cont.)

 Interconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing
among these file systems in a transparent manner
 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

 Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to
be provided
 Files in the remote directory can then be accessed in a

transparent manner
 Subject to access-rights accreditation, potentially any file

system (or directory within a file system), can be mounted
remotely on top of any local directory

11.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS (Cont.)NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network architectures;
the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives
built on top of an External Data Representation (XDR) protocol
used between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided
by a mount mechanism and the actual remote-file-access services

11.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Three Independent File SystemsThree Independent File Systems

11.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Mounting in NFS Mounting in NFS

Mounts Cascading mounts

11.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Mount ProtocolNFS Mount Protocol

 Establishes initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted and
name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

 Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

 Following a mount request that conforms to its export list, the server
returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to identify
the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not affect
the server side

11.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS ProtocolNFS Protocol

 Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:
 searching for a file within a directory
 reading a set of directory entries
 manipulating links and directories
 accessing file attributes
 reading and writing files

 NFS servers are stateless; each request has to provide a full set of
arguments

(NFS V4 is just coming available – very different, stateful)
 Modified data must be committed to the server’s disk before results

are returned to the client (lose advantages of caching)
 The NFS protocol does not provide concurrency-control

mechanisms

11.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Three Major Layers of NFS Architecture Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from
remote ones, and local files are further distinguished according to
their file-system types

 The VFS activates file-system-specific operations to handle
local requests according to their file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

 Implements the NFS protocol

11.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of NFS Architecture Schematic View of NFS Architecture

11.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Path-Name TranslationNFS Path-Name Translation

 Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of component
name and directory vnode

 To make lookup faster, a directory name lookup cache on the
client’s side holds the vnodes for remote directory names

11.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Remote OperationsNFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX system
calls and the NFS protocol RPCs (except opening and closing files)

 NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance

 File-blocks cache – when a file is opened, the kernel checks with
the remote server whether to fetch or revalidate the cached
attributes

 Cached file blocks are used only if the corresponding cached
attributes are up to date

 File-attribute cache – the attribute cache is updated whenever new
attributes arrive from the server

 Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

11.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example: WAFL File SystemExample: WAFL File System

 Used on Network Appliance “Filers” – distributed file system
appliances

 “Write-anywhere file layout”

 Serves up NFS, CIFS, http, ftp

 Random I/O optimized, write optimized

 NVRAM for write caching

 Similar to Berkeley Fast File System, with extensive modifications

11.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The WAFL File LayoutThe WAFL File Layout

11.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Snapshots in WAFLSnapshots in WAFL

11.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

11.0211.02

End of Chapter 11End of Chapter 11

