Chapter 6: Process Synchronization
QIBBBIICIIBD DI IIBIIICIIBB NG

Module 6: Process Synchronization

Background

The Critical-Section Problem
Peterson’s Solution

Synchronization Hardware
Semaphores

Classic Problems of Synchronization
Monitors

Synchronization Examples

Atomic Transactions

Operating System Concepts 6.2

Background

B Concurrent access to shared data may result in data
Inconsistency

B Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

B Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We
can do so by having an integer count that keeps track of
the number of full buffers. Initially, count is set to O. It is
incremented by the producer after it produces a new
buffer and is decremented by the consumer after it
consumes a buffer.

NG
Operating System Concepts 6.3 Silberschatz, Galvin and Gagne ©2005

while (true)

Operating System Concepts

Producer

[* produce an item and put in nextProduced
while (count == BUFFER_SIZE)
; /I do nothing
buffer [in] = nextProduced,;
in = (in + 1) % BUFFER_SIZE;
count++;

6.4

while (1)
{

Operating System Concepts

Consumer

while (count == 0)

; /I do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

[* consume the item in nextConsumed

6.5

Silberschatz, Galvin and Gagne ©2005

Race Condition

B count++ could be implemented as

registerl = count
registerl = registerl + 1
count = registerl

B count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

B Consider this execution interleaving with “count = 5” initially:

SO:
S1:
S2:
S3:
S4:
Sh:

Operating System Concepts

producer execute registerl = count {registerl = 5}
producer execute registerl = registerl + 1 {registerl = 6}
consumer execute register2 = count {register2 = 5}
consumer execute register2 = reqister2 - 1 {register2 = 4}
producer execute count = registerl {count=6 }
consumer execute count = register2 {count = 4}

6.6

Solution to Critical-Section Problem

1. Mutual Exclusion - If process P, is executing in its critical section,
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,
then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section and
before that request is granted

® Assume that each process executes at a honzero speed
® No assumption concerning relative speed of the N processes

Ve v

Operating System Concepts 6.7 Silberschatz, Galvin and Gagne ©2005

Peterson’s Solution

B Two process solution

B Assume that the LOAD and STORE instructions are atomic;
that is, cannot be interrupted.

B The two processes share two variables:
® intturn;
® Boolean flag[2]

B The variable turn indicates whose turn it is to enter the
critical section.

B The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that process P,

IS ready!

R b
Operating System Concepts 6.8 Silberschatz, Galvin and Gagne ©2005

do {
flag[i] = TRUE;
turn = j;
while (flag[j] && turn ==j);
CRITICAL SECTION
flag[i] = FALSE;

REMAINDER SECTION

} while (TRUE):

Operating System Concepts 6.9

Algorithm for Process P,

Silberschatz, Galvin and Gagne ©2005

Synchronization Hardware

B Many systems provide hardware support for critical section
code

B Uniprocessors — could disable interrupts

® Currently running code would execute without
preemption

® Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable

B Modern machines provide special atomic hardware
Instructions

» Atomic = non-interruptable
® Either test memory word and set value
® Or swap contents of two memory words

R o "
Operating System Concepts 6.10 Silberschatz, Galvin and Gagne ©2005

TestAndndSet Instruction

B Definition:

boolean TestAndSet (boolean *target)

{
boolean rv = *target;
*target = TRUE;
return rv:

}

N 'l
Operating System Concepts 6.11 Silberschatz, Galvin and Gagne ©2005

Solution using TestAndSet

B Shared boolean variable lock., initialized to false.
B Solution:
do {
while (TestAndSet (&lock))
; [* do nothing
/I critical section
lock = FALSE;

/l remainder section

} while (TRUE):

Operating System Concepts 6.12

Swap Instruction

B Definition:

void Swap (boolean *a, boolean *b)

{
boolean temp = *a;
*g = *:
*b = temp:

}

Operating System Concepts 6.13 STl G e Csaie O2i5E

Solution using Swap

B Shared Boolean variable lock initialized to FALSE; Each
process has a local Boolean variable key.

B Solution:
do {
key = TRUE;
while (key == TRUE)
Swap (&lock, &key);

/[l critical section

lock = FALSE;

// remainder section

} while (TRUE):

fm 2 ; S V‘ ‘ »
Operating System Concepts 6.14 Silberschatz, Galvin and Gagne ©2005

Semaphore

Synchronization tool that does not require busy waiting

Semaphore S — integer variable

Two standard operations modify S: wait() and signal()

® Oiriginally called P() and V()
Less complicated
Can only be accessed via two indivisible (atomic) operations

® wait (S) {
while S<=0
; /I no-op

S

}
® signal (S) {
S++;

Operating System Concepts 6.15

Semaphore as General Synchronization Tool

B Counting semaphore — integer value can range over an
unrestricted domain

B Binary semaphore — integer value can range only between 0
and 1; can be simpler to implement

® Also known as mutex locks
B Canimplement a counting semaphore S as a binary semaphore
B Provides mutual exclusion
® Semaphore S; // initialized to 1
® wait (S);
Critical Section
signal (S);

Operating System Concepts 6.16

Semaphore Implementation

B Must guarantee that no two processes can execute wait () and
signal () on the same semaphore at the same time

B Thus, implementation becomes the critical section problem
where the wait and signal code are placed in the crtical section.

® Could now have busy waiting in critical section
implementation

» But implementation code is short
> Little busy waiting if critical section rarely occupied

B Note that applications may spend lots of time in critical sections
and therefore this is not a good solution.

s
i} SR
4 - W™

Operating System Concepts 6.17 Silberschatz, Galvin and Gagne ©2005

Semaphore Implementation with no Busy waiting

B \With each semaphore there is an associated waiting queue.
Each entry in a waiting queue has two data items:
® value (of type integer)
® pointer to next record in the list

B Two operations:

® block — place the process invoking the operation on the
appropriate waiting queue.

® wakeup — remove one of processes in the waiting queue
and place it in the ready queue.

. 3
R il

Operating System Concepts 6.18 Silberschatz, Galvin and Gagne ©2005

Semaphore Implementation with no Busy waiting (Cont.)

B |mplementation of wait:

wait (S){
value--;
if (value <0) {
add this process to waiting queue
block(); }

}

B |Implementation of signal:

Signal (S){
value++;
if (value <=0){
remove a process P from the waiting queue
wakeup(P); }

Operating System Concepts 6.19

Deadlock and Starvation

B Deadlock — two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

B |[etSand Q be two semaphores initialized to 1

P, P,
wait (S); wait (Q);
wait (Q); wait (S);
signal (S); | signal (Q);
signal (Q); signal (S);

B Starvation — indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

fm 2 ; S V‘ ‘ »
Operating System Concepts 6.20 Silberschatz, Galvin and Gagne ©2005

Classical Problems of Synchronization

B Bounded-Buffer Problem
B Readers and Writers Problem
B Dining-Philosophers Problem

N 'l
Operating System Concepts 6.21 Silberschatz, Galvin and Gagne ©2005

Bounded-Buffer Problem

N buffers, each can hold one item
Semaphore mutex initialized to the value 1
Semaphore full initialized to the value 0

Semaphore empty initialized to the value N.

Operating System Concepts 6.22 Silberschatz, Galvin and Gagne ©2005

B The structure of the producer process

do {

/[produce an item

wait (empty);
wait (mutex);

/I add the item to the buffer
signal (mutex);

signal (full);
} while (true);

Operating System Concepts 6.23

Bounded Buffer Problem (Cont.)

Silberschatz, Galvin and Gagne ©2005

B The structure of the consumer process
do {
wait (full);
wait (mutex);

/I remove an item from buffer

signal (mutex);
signal (empty);

/I consume the removed item

} while (true);

Operating System Concepts 6.24

Bounded Buffer Problem (Cont.)

i v 4
Silberschatz, Galvin and Gagne ©2005

Readers-Writers Problem

B A data set is shared among a number of concurrent processes

® Readers — only read the data set; they do not perform any
updates

® \Writers - can both read and write.

B Problem — allow multiple readers to read at the same time. Only
one single writer can access the shared data at the same time.

B Shared Data
® Data set
® Semaphore mutex initialized to 1.
® Semaphore wrt initialized to 1.
® Integer readcount initialized to O.

R b
Operating System Concepts 6.25 Silberschatz, Galvin and Gagne ©2005

Readers-Writers Problem (Cont.)

B The structure of a writer process

do {
wait (wrt) ;

/[writing is performed

signal (wrt) ;
} while (true)

Operating System Concepts 6.26

Readers-Writers Problem (Cont.)

B The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readercount == 1) wait (wrt) ;
signal (mutex)

/l reading is performed

wait (mutex) ;
readcount - -;
if redacount == 0) signal (wrt) ;
signal (mutex) ;
} while (true)

Operating System Concepts 6.27

Dining-Philosophers Problem

B Shared data

® Bowl of rice (data set)
® Semaphore chopstick [5] initialized to 1

Operating System Concepts 6.28 Silberschatz, Galvin and Gagne ©»2fOS

B The structure of Philosopher i:
Do {
wait (chopstick(i]);
wait (chopStick[(i + 1) % 5]);

/I eat

signal (chopstick[i]);

signal (chopstick|[(i + 1) % 5]);

/" think

} while (true) ;

Operating System Concepts 6.29

Dining-Philosophers Problem (Cont.)

L oo g
Silberschatz, Galvin and Gagne ©2005

Problems with Semaphores

B Correct use of semaphore operations:
® signal (mutex) wait (mutex)

® wait (mutex) ... wait (mutex)

® Omitting of wait (mutex) or signal (mutex) (or both)

Operating System Concepts 6.30 Silberschatz, Galvin and Gagne ©2005

Monitors

B A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

B Only one process may be active within the monitor at a time

monitor monitor-name

{
Il shared variable declarations
procedure P1 (...){.... }
procedure Pn (...) {...... }
Initialization code (....){ ... }
}

}

Operating System Concepts 6.31

Schematic view of a Monitor

entry queue

shared data

~

operations
initialization
code

Operating System Concepts 6.32

Condition Variables

B condition x, y;

B Two operations on a condition variable:
® x.wait () — a process that invokes the operation is
suspended.
® x.signal () — resumes one of processes (if any) tha
invoked x.walit ()

) " b y

Operating System Concepts 6.33 Silberschatz, Galvin and Gagne ©2005

Monitor with Condition Variables

entry queue

shared data

gueues associated with

x, y conditions y >

Y

operations

initialization
code

Operating System Concepts 6.34 Silberschatz, Galvin and Gagne 05

Solution to Dining Philosophers

monitor DP
{
enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int) {
state[i] = HUNGRY;
test(i);
if (state[i] = EATING) self [i].wait;

void putdown (int i) {
state[i] = THINKING;
/[test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

Operating System Concepts 6.35

Solution to Dining Philosophers (cont)

void test (int i) {
if ((state[(i + 4) % 5] '= EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] = EATING)) {
state[i] = EATING ;
selffi].signal () ;
}
}

initialization_code() {
for (inti=0;i<5;i++)
state[i] = THINKING,;

Operating System Concepts 6.36 Silberschatz, Galvin and Gagne ©2005

Synchronization Examples

Solaris
Windows XP
Linux
Pthreads

Operating System Concepts 6.37

Solaris Synchronization

B |mplements a variety of locks to support multitasking,
multithreading (including real-time threads), and multiprocessing

B Uses adaptive mutexes for efficiency when protecting data from
short code segments

B Uses condition variables and readers-writers locks when longer
sections of code need access to data

B Uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or reader-writer lock

o | ,; (

Operating System Concepts 6.38 Silberschatz, Galvin and Gagne ©2005

Windows XP Synchronization

B Uses interrupt masks to protect access to global resources on
uniprocessor systems

B Uses spinlocks on multiprocessor systems

B Also provides dispatcher objects which may act as either mutexes
and semaphores

B Dispatcher objects may also provide events
® An event acts much like a condition variable

Operating System Concepts 6.39

Linux Synchronization

H Linux:
® disables interrupts to implement short critical sections

B Linux provides:
® semaphores
® spin locks

Operating System Concepts 6.40

Pthreads Synchronization

B Pthreads APl is OS-independent
B |t provides:

® mutex locks

® condition variables

B Non-portable extensions include:
® read-write locks
® spin locks

vt "
Operating System Concepts 6.41 Silberschatz, Galvin and Gagne ©2005

End of Chapter 6
QIBBBIIGIIBDIICIIBD DI IIBDIIG

