Chapter 3: Processes
QIBBBIICIIBD DI IIBIIICIIBB NG

Chapter 3: Processes

Process Concept

Process Scheduling
Operations on Processes
Cooperating Processes
Interprocess Communication

Communication in Client-Server Systems

Operating System Concepts 3.2 Silberschatz, Galvin and Gagne ©2005

Process Concept

B An operating system executes a variety of programs:
® Batch system — jobs
® Time-shared systems — user programs or tasks

B Textbook uses the terms job and process almost
interchangeably

B Process — a program in execution; process execution must
progress in sequential fashion

B A process includes:
® program counter
® stack
® data section

R
Operating System Concepts 3.3 Silberschatz, Galvin and Gagne ©2005

Process in Memory

Imax

stack

heap

data

text

Operating System Concepts 3.4

Process State

B As a process executes, it changes state

Operating System Concepts 85

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a process
terminated: The process has finished execution

Diagram of Process State

I/O or event completion

admitted

interrupt

scheduler dispatch

Operating System Concepts

I/0O or event wait

3.6

Process Control Block (PCB)

Information associated with each process
B Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

I/O status information

Operating System Concepts 3.7

Process Control Block (PCB)

PIEGESSESIEIE

process number

program counter

registers

memory limits

list of open files

Operating System Concepts 3.8 Silberschatz, Galvin and Gagne ©2005

CPU Switch From Process to Process

process P, operating system process P,
interrupt or system call
lexecuting ;L
h 4 -
T save state into PCB,
: - idle
reload state from PCB, 1
ridle interrupt or system call executingj
h 4 \ ! ~
save state into PCB;
® .
. > idle
[]
) reload state from PCB, J
Executing ImM—]

Operating System Concepts 3.9 Silberschatz, Galvin and Gagne 205

Process Scheduling Queues

B Job queue — set of all processes in the system

B Ready queue — set of all processes residing in main memory,
ready and waiting to execute

B Device queues — set of processes waiting for an 1/0O device
B Processes migrate among the various queues

. vt

Operating System Concepts 3.10 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

queue header PCB, PCB,
ready head I >
queue =l o registers registers
mag head +——=
tape , -
unit 0 tal =
{nag head ——m
ape
uni?1 R PCB;, PCB,, PCBg
/ -]
disk head ¢
unit 0 Ll ‘\
PCB;
lterminal head > —=
unit 0 T |
3.11

Silberschatz, Galvin an& Gagne ©2,05

Representation of Process Scheduling

— »
o[[eatquete CPU
I/O queue < |[/Orequest [
time slice
expired
child fork a
@7 child)
interrupt wait for an
occurs interrupt

Operating System Concepts 3.12

Schedulers

B | ong-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

B Short-term scheduler (or CPU scheduler) — selects
which process should be executed next and allocates
CPU

'a'\) " < s

Operating System Concepts 3.13 Silberschatz, Galvin and Gagne ©2005

Addition of Medium Term Scheduling

swap in partially executed swap out
swapped-out processes
ready queue @L » end
I/0O waiting
queues

Yy

Operating System Concepts 3.14 Silberschatz, Galvin and Gagne 205

Schedulers (Cont.)

B Short-term scheduler is invoked very frequently (milliseconds) [
(must be fast)

B | ong-term scheduler is invoked very infrequently (seconds,
minutes) O (may be slow)

B The long-term scheduler controls the degree of multiprogramming
B Processes can be described as either:

® |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

® CPU-bound process — spends more time doing computations;
few very long CPU bursts

R o
Operating System Concepts 3.15 Silberschatz, Galvin and Gagne ©2005

Context Switch

B When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new
process

B Context-switch time is overhead; the system does no useful work
while switching

B Time dependent on hardware support

R b
Operating System Concepts 3.16 Silberschatz, Galvin and Gagne ©2005

Process Creation

B Parent process create children processes, which, in turn create
other processes, forming a tree of processes

B Resource sharing
® Parent and children share all resources
® Children share subset of parent’s resources
® Parent and child share no resources
B Execution
® Parent and children execute concurrently
® Parent waits until children terminate

Operating System Concepts 3.17 Silberschatz, Galvin and Gagne ©2005

Process Creation (Cont.)

B Address space
® Child duplicate of parent
® Child has a program loaded into it
B UNIX examples
® fork system call creates new process

® exec system call used after a fork to replace the process’
memory space with a new program

Operating System Concepts 3.18

Process Creation

resumes

Operating System Concepts 3.19

C Program Forking Separate Process

int main ()
{
Pid t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */
execlp("/bin/1ls", "ls'", NULL) ;

} ,
else { /* parent process */

/* parent will wait for the child to
complete */

wait (NULL) ;
printf ("Child Complete") ;
exit (0) ;

Operating System Concepts 3.20 Silberschatz, Galvin and Gagne ©2005

telnetdaemon
pid = 7776
Csh
pid = 7778

Netscape l emacs
pid = 8105

pid = 7785

Xsession
pid = 294
sdt_shel
pid = i)

Csh
pid = 1400

l cat
‘ pid = 2536

Operating System Concepts 3.21 Silberschatz, Galvin and Gagne 2005

Process Termination

B Process executes last statement and asks the operating system to
delete it (exit)

® OQutput data from child to parent (via wait)

® Process’ resources are deallocated by operating system
B Parent may terminate execution of children processes (abort)

® Child has exceeded allocated resources

® Task assigned to child is no longer required

® |If parent is exiting

» Some operating system do not allow child to continue if its
parent terminates

All children terminated - cascading termination

Operating System Concepts 3.22

Cooperating Processes

B |ndependent process cannot affect or be affected by the execution
of another process

B Cooperating process can affect or be affected by the execution of
another process

B Advantages of process cooperation
® Information sharing
® Computation speed-up
® Modularity
® Convenience

Operating System Concepts 828

Producer-Consumer Problem

B Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

® unbounded-buffer places no practical limit on the size of
the buffer

® bounded-buffer assumes that there is a fixed buffer size

fm 2 ; S V‘ ‘ »
Operating System Concepts 3.24 Silberschatz, Galvin and Gagne ©2005

Bounded-Buffer — Shared-Memory Solution

B Shared data
#define BUFFER_SIZE 10
Typedef struct {

} item;

item buffer[BUFFER_SIZE];
intin = O;
int out = O;

B Solution is correct, but can only use BUFFER_SIZE-1 elements

" et
Operating System Concepts 3.25 Silberschatz, Galvin and Gagne ©2005

Bounded-Buffer — Insert() Method

while (true) {
/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE

count) == out)
; /* do nothing -- no free buffers */
buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

A {
Z N :' < v..,w, H

Operating System Concepts 3.26 Silberschatz, Galvin and Gagne ©2005

Bounded Buffer — Remove() Method

while (true) {
while (in == out)

; // do nothing -- nothing
to consume

// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;

return item;

{

?*%myVV
Operating System Concepts 3.27 Silberschatz, Galvin and Gagne ©2005

Interprocess Communication (IPC)

B Mechanism for processes to communicate and to synchronize their
actions

B Message system — processes communicate with each other without
resorting to shared variables

B |PC facility provides two operations:
® send(message) — message size fixed or variable
® receive(message)
B |f P and Q wish to communicate, they need to:
® establish a communication link between them
® exchange messages via send/receive
B Implementation of communication link
® physical (e.g., shared memory, hardware bus)
® Jogical (e.g., logical properties)

Ve v "
Operating System Concepts 3.28 Silberschatz, Galvin and Gagne ©2005

Implementation Questions

B How are links established?
B Can alink be associated with more than two processes?

B How many links can there be between every pair of communicating
processes?

B \What is the capacity of a link?

B |s the size of a message that the link can accommodate fixed or
variable?

B |s a link unidirectional or bi-directional?

. g
R il

Operating System Concepts 3.29 Silberschatz, Galvin and Gagne ©2005

Communications Models

process A M process A

— 1
shared ﬂ
pE—

process B M process B

kernel M kernel

(@) (b)

Operating System Concepts 3.30

Direct Communication

B Processes must name each other explicitly:

® send (P, message) — send a message to process P

® receive(Q, message) — receive a message from process Q
B Properties of communication link

® Links are established automatically

® Alink is associated with exactly one pair of communicating
processes

® Between each pair there exists exactly one link
® The link may be unidirectional, but is usually bi-directional

— ot
BN i O
Y R

Operating System Concepts 3.31 Silberschatz, Galvin and Gagne ©2005

Indirect Communication

B Messages are directed and received from mailboxes (also
referred to as ports)

® Each mailbox has a unique id
® Processes can communicate only if they share a mailbox
B Properties of communication link
® Link established only if processes share a common mailbox
® A link may be associated with many processes

® Each pair of processes may share several communication
links |

® Link may be unidirectional or bi-directional

7~

Operating System Concepts 3.32 Silberschatz, Galvin and Gagne ©2005

Indirect Communication

B Operations
® create a new mailbox
® send and receive messages through mailbox
® destroy a mailbox
B Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts 2138

Indirect Communication

B Mailbox sharing
® P, P,, and P, share mailbox A
® P, sends; P, and P, receive
® Who gets the message”?
B Solutions
® Allow a link to be associated with at most two processes
® Allow only one process at a time to execute a receive operation

® Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

Operating System Concepts 3.34 Silberschatz, Galvin and Gagne ©2005

Synchronization

B Message passing may be either blocking or non-blocking
B Blocking is considered synchronous

® Blocking send has the sender block until the message is
received

® Blocking receive has the receiver block until a message is
available

B Non-blocking is considered asynchronous

® Non-blocking send has the sender send the message and
continue

® Non-blocking receive has the receiver receive a valid
message or null

V2 R

Operating System Concepts 3.35 Silberschatz, Galvin and Gagne ©2005

Buffering

B Queue of messages attached to the link; implemented in one of
three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

— :,* ‘ .‘
Operating System Concepts 3.36 Silberschatz, Galvin and Gagne ©2005

Client-Server Communication

B Sockets
B Remote Procedure Calls
B Remote Method Invocation (Java)

Operating System Concepts SLel STl G e Csaie O2i5E

Sockets

B A socket is defined as an endpoint for communication
B Concatenation of IP address and port

B The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

B Communication consists between a pair of sockets

fm 2 ; S V‘ ‘ »
Operating System Concepts 3.38 Silberschatz, Galvin and Gagne ©2005

Socket Communication

host X
(146.86.5.20)

socket

(4686 & Ale 25
web server

(161.25.19.8)

socket
A 25 R,

Operating System Concepts 3.39 Silberschatz, Galvin and Gagne 05

Remote Procedure Calls

B Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems.

B Stubs - client-side proxy for the actual procedure on the server.

B The client-side stub locates the server and marshalls the
parameters.

B The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the server.

- ¢
O e
V4 '«' L

Operating System Concepts 3.40 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC message

kernel sends
RFC

kernel receives
reply, passes
it fo user

messages

From: client
To: server
Part: matchmaker
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server
Port: port P
<contents=>

From: RPC
Port: P
To: client
Port: kernel
<output=

server

matchmaker
receives
message, looks
up answer

h i

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

k 4
daemon
processes
request and
processes send
output

341

Silberschatz, Galvin anJ Gagne OS

Remote Method Invocation

Remote Method Invocation (RMI) is a Java mechanism similar to
RPCs.

B RMI allows a Java program on one machine to invoke a method on
a remote object.

Java @-
program

~® remote
object

Operating System Concepts 3.42 Silberschatz, Galvin and Gagne ©2005

Marshalling Parameters

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

P

skeleton
F 3

A, B, someMethod

boolean return value

Operating System Concepts 3.43

End of Chapter 3
QIBBBIIGIIBDIICIIBD DI IIBDIIG

