Chapter 11: File System
Implementation

SCIBBDIIGIBBDIIG ISP I IS IS

Chapter 11: File System Implementation

File-System Structure
File-System Implementation
Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance
Recovery

Log-Structured File Systems
NFS

Example: WAFL File System

Operating System Concepts 11.2

Objectives

B To describe the details of implementing local file systems and
directory structures

B To describe the implementation of remote file systems
B To discuss block allocation and free-block algorithms and trade-offs

Operating System Concepts 11.3

File-System Structure

B File structure
® Logical storage unit
® Collection of related information
B File system resides on secondary storage (disks)

File system organized into layers

B File control block — storage structure consisting of information
about a file

Operating System Concepts 114

Layered File System

application programs

logical file system

y

file-organization module}

{

basic file system

!

/O control

!

devices

Operating System Concepts 11.5

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Operating System Concepts 11.6

In-Memory File System Structures

B The following figure illustrates the necessary file system structures
provided by the operating systems.

B Figure 12-3(a) refers to opening a file.

B Figure 12-3(b) refers to reading a file.

Operating System Concepts 11.7

In-Memory File System Structures

open (file name)

'

h 4

directory structure

directory structure

=

file-control block

user space

kernel memory

(@)

secondary storage

read (index)

index
per-process system-wide
open-file table open-file table

/

data blocks

Mo

file-control block

user space

kernel memory

(b)

secondary storage

Operating System Concepts

11.8

Silberschatz, Galvin and\ Gagne ©»2fOS

Virtual File Systems

B Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

B VFS allows the same system call interface (the API) to be used for
different types of file systems.

B The API is to the VFS interface, rather than any specific type of file
system.

R b
Operating System Concepts 11.9 Silberschatz, Galvin and Gagne ©2005

Schematic View of Virtual File System

file-system interface

|

VES interface

|

local file system
type 1

 J

local file system
type 2

|

remote file system
type 1

Y~

network

Operating System Concepts

11.10

Directory Implementation

B Linear list of file names with pointer to the data blocks.
® simple to program
® time-consuming to execute

M Hash Table - linear list with hash data structure.

® decreases directory search time

® collisions — situations where two file names hash to the same
location

® fixed size

Operating System Concepts 11.11

Allocation Methods

B An allocation method refers to how disk blocks are allocated for
files:

B Contiguous allocation

B Linked allocation

B |ndexed allocation

Operating System Concepts 11.12 Silberschatz, Galvin and Gagne ©2005

Contiguous Allocation

B Each file occupies a set of contiguous blocks on the disk

B Simple — only starting location (block #) and length (number
of blocks) are required

B Random access
B \Wasteful of space (dynamic storage-allocation problem)

B Files cannot grow

fm 2 ; S V‘ ‘ »
Operating System Concepts 11.13 Silberschatz, Galvin and Gagne ©2005

Contiguous Allocation

B Mapping from logical to physical

~Q

LA/512

AN
R

Block to be accessed = ! + starting address
Displacement into block =R

Operating System Concepts 11.14

Contiguous Allocation of Disk Space

directory
ol file start length
RN 2] | 3] count 0 2
f tr 14 3
al] 5[] 6L 7[] mail 19 6
s[] o110 111[] lst 8 4
12 J13[J14 150]
16 117118]19[]
mail
el 2l el
24[]25[J26[J27[]
list
28[]29[130[131[]

Operating System Concepts 11.15

Extent-Based Systems

B Many newer file systems (l.e. Veritas File System) use a modified
contiguous allocation scheme

B Extent-based file systems allocate disk blocks in extents

B An extent is a contiguous block of disks
® Extents are allocated for file allocation
® A file consists of one or more extents.

o | ,; (

Operating System Concepts 11.16 Silberschatz, Galvin and Gagne ©2005

Linked Allocation

B Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

block

pointer

vt "
Operating System Concepts 11.17 Silberschatz, Galvin and Gagne ©2005

Linked Allocation (Cont.)

B Simple — need only starting address
B Free-space management system — no waste of space
B No random access
B Mapping
Q
LNSll\R

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
Displacement into block =R + 1

File-allocation table (FAT) — disk-space allocation used by MS-DOS
and OS/2.

Operating System Concepts 11.18 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

Linked Allocation

directory

end
25

file start
jeep 9

8]
12[J13[114[115
16[J17[J18[J19[]
20[J21[Je2[123[]

9[1]10[2]11[_]

24 J25F126[127]
28[129[130[131[]

11.19

File-Allocation Table

|_

start block

no. of disk blocks -1

Operating System Concepts

Indexed Allocation

B Brings all pointers together into the index block.
B | ogical view.

I— I:I
—>|:|
> I:I

index table

Operating System Concepts 11.21

Example of Indexed Allocation

directory
file index block
jeep 19

ol] 1[\2[| 3]

4[] 5[] 7[]
8[] o[J1o[N11[]
12D13$§

20[J21[J22 23D
2412526 127[]
28 29[J30[131[]

—on ¢
i’/ g) 2]
e~ — W,

Operating System Concepts 11.22 Silberschatz, Galvin and Gagne ©2””005

Indexed Allocation (Cont.)

Need index table
Random access

Dynamic access without external fragmentation, but have
overhead of index block.

B Mapping from logical to physical in a file of maximum size of
256K words and block size of 512 words. We need only 1
block for index table.

Q

N
R

LA/512

Q = displacement into index table
R = displacement into block

Operating System Concepts 11.23 Silberschatz, Galvin and Gagne ©2005

Indexed Allocation — Mapping (Cont.)

B Mapping from logical to physical in a file of unbounded
length (block size of 512 words).

B [inked scheme — Link blocks of index table (no limit on
size).

Q,
LA / (512 x 511)<
R

1

Q, = block of index table
R, is used as follows:

R, /512
RZ

Q, = displacement into block of index table
R, displacement into block of file:

| ,; (

Operating System Concepts 11.24 Silberschatz, Galvin and Gagne ©2005

Indexed Allocation — Mapping (Cont.)

B Two-level index (maximum file size is 5123)

Q,
LA / (512 x 512)<
R

1

Q, = displacement into outer-index
R, is used as follows:

R, /512
RZ

Q, = displacement into block of index table
R, displacement into block of file:

Operating System Concepts 11.25

Indexed Allocation — Mapping (Cont.)

- I B
/ \
\ \\
\ ™~
\\
\\
outer-index
index table file

" et
Operating System Concepts 11.26 Silberschatz, Galvin and Gagne ©2005

Combined Scheme: UNIX (4K bytes per block)

mode

owners (2)

timestamps (3) o
—> data

size block count

— data

» data
direct blocks 7 :

= ——> data

«T—> data
single indirect ——»{ o E > data

= ——» data S

double indirect . » data
triple indirect - > 2 » data
z » data

Operating System Concepts 11.27 Silberschatz, Galvin and Gagne ©»2fOS

Free-Space Management

B Bit vector (n blocks)
O 1 2 n-1

. 0 O block]i] free
bit[i] =
1 O block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

Operating System Concepts 11.28 Silberschatz, Galvin and Gagne ©2005

Free-Space Management (Cont.)

B Bit map requires extra space
® Example:
block size = 22 bytes
disk size = 2%° bytes (1 gigabyte)
n = 230/212 = 218 pits (or 32K bytes)
B Easy to get contiguous files
B Linked list (free list)
® Cannot get contiguous space easily
® No waste of space
B Grouping
B Counting

Operating System Concepts 11.29 Silberschatz, Galvin and Gagne ©2005

Free-Space Management (Cont.)

B Need to protect:
® Pointer to free list
® Bit map
» Must be kept on disk
» Copy in memory and disk may differ

» Cannot allow for block]i] to have a situation where
bit[i] = 1 in memory and bit[i] = 0 on disk

® Solution:
» Set bit[i] = 1 in disk
> Allocate blockfi]
» Set bit[i] = 1 in memory

3Ny
o N ;' -4 ,,

Operating System Concepts 11.30 Silberschatz, Galvin and Gagne ©2005

Directory Implementation

B Linear list of file names with pointer to the data blocks
® simple to program
® time-consuming to execute

B Hash Table - linear list with hash data structure
® decreases directory search time

® collisions — situations where two file names hash to the same
location

® fixed size

Operating System Concepts 11.31

Operating System Concepts

free-space list head

Linked Free Space List on Disk

11.32

20[_]21[]22F 123 |
24[125[|26[|27
28[129[130131]

Silberschatz, Galvin and\ Gagne ©»2fOS

Efficiency and Performance

B Efficiency dependent on:
® disk allocation and directory algorithms
® types of data kept in file’s directory entry

B Performance

® disk cache — separate section of main memory for frequently
used blocks

® free-behind and read-ahead — techniques to optimize
sequential access

® improve PC performance by dedicating section of memory as
virtual disk, or RAM disk

R b
Operating System Concepts 11.33 Silberschatz, Galvin and Gagne ©2005

Page Cache

B A page cache caches pages rather than disk blocks using virtual
memory techniques

B Memory-mapped I/O uses a page cache

B Routine I/O through the file system uses the buffer (disk) cache

B This leads to the following figure

fm 2 ; S V‘ ‘ »
Operating System Concepts 11.34 Silberschatz, Galvin and Gagne ©2005

I/0O Without a Unified Buffer Cache

/O using
read() and write()

memory-mapped 1/O

I

page cache

\

buffer cache

|

file system

Operating System Concepts 11.35

Unified Buffer Cache

B A unified buffer cache uses the same page cache to cache both
memory-mapped pages and ordinary file system I/O

vt "
Operating System Concepts 11.36 Silberschatz, Galvin and Gagne ©2005

I/0O Using a Unified Buffer Cache

/O using
read() and write()

N/

memory-mapped I/O

buffer cache

|

file system

Operating System Concepts 11.37 Silberschatz, Galvin and Gagne ©2,05

Recovery

B Consistency checking — compares data in directory structure with
data blocks on disk, and tries to fix inconsistencies

B Use system programs to back up data from disk to another storage
device (floppy disk, magnetic tape, other magnetic disk, optical)

B Recover lost file or disk by restoring data from backup

4 = o
Operating System Concepts 11.38 Silberschatz, Galvin and Gagne ©2005

Log Structured File Systems

B | og structured (or journaling) file systems record each update to
the file system as a transaction

B All transactions are written to a log

® A transaction is considered committed once it is written to the
log
® However, the file system may not yet be updated

B The transactions in the log are asynchronously written to the file
system

® When the file system is modified, the transaction is removed
from the log

B |[f the file system crashes, all remaining transactions in the log must
still be performed

Operating System Concepts 11.39 Silberschatz, Galvin and Gagne ©2005

The Sun Network File System (NFS)

B An implementation and a specification of a software system for
accessing remote files across LANs (or WANS)

B The implementation is part of the Solaris and SunOS operating
systems running on Sun workstations using an unreliable datagram
protocol (UDP/IP protocol and Ethernet

Operating System Concepts 11.40 Silberschatz, Galvin and Gagne ©2005

NFS (Cont.)

B |nterconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing
among these file systems in a transparent manner

® A remote directory is mounted over a local file system directory

» The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

® Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to
be provided

» Files in the remote directory can then be accessed in a
transparent manner

® Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory

Operating System Concepts 11.41 Silberschatz, Galvin and Gagne ©2005

NFS (Cont.)

B NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network architectures;
the NFS specifications independent of these media

B This independence is achieved through the use of RPC primitives
built on top of an External Data Representation (XDR) protocol
used between two implementation-independent interfaces

B The NFS specification distinguishes between the services provided
by a mount mechanism and the actual remote-file-access services

Operating System Concepts 11.42 Silberschatz, Galvin and Gagne ©2005

Three Independent File Systems

usr

local

S1:

usr

shared

Operating System Concepts

S2:

usr

11.43

Silberschatz, Galvin an& Gagne ©2,05

Mounting in NFS

U: U:

usr

local

(a) (b)
Mounts Cascading mounts

Operating System Concepts 11.44

NFS Mount Protocol

B Establishes initial logical connection between server and client

B Mount operation includes name of remote directory to be mounted and
name of server machine storing it

® Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

® Export list — specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

B Following a mount request that conforms to its export list, the server
returns a file handle—a key for further accesses

B File handle — a file-system identifier, and an inode number to identify
the mounted directory within the exported file system

B The mount operation changes only the user’s view and does not affect
the server side

Operating System Concepts 11.45 Silberschatz, Galvin and Gagne ©2005

NFS Protocol

B Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

® searching for a file within a directory
® reading a set of directory entries

® manipulating links and directories

® accessing file attributes

® reading and writing files

B NFS servers are stateless; each request has to provide a full set of
arguments
(NFS V4 is just coming available — very different, stateful)

B Modified data must be committed to the server’s disk before results
are returned to the client (lose advantages of caching)

B The NFS protocol does not provide concurrency-control
mechanisms

/‘*»3 %
Operating System Concepts 11.46 Silberschatz, Galvin and Gagne ©2005

Three Major Layers of NFS Architecture

B UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

B Virtual File System (VFS) layer — distinguishes local files from
remote ones, and local files are further distinguished according to

their file-system types

® The VFS activates file-system-specific operations to handle
local requests according to their file-system types

® Calls the NFS protocol procedures for remote requests

B NFS service layer — bottom layer of the architecture
® Implements the NFS protocol

e NERT 2 i
Vv W™

Operating System Concepts 11.47 Silberschatz, Galvin and Gagne ©2005

client

system-calls interface

!

Schematic View of NFS Architecture

server

VFS interface — VFS interface
j) l l
other types of UNIX file NFS NFS UNIX file
file systems system client server system
RPC/XDR RPC/XDR
. -
l T
network i,
11.48 Silberschatz, Galvin and Gagne"5

Operating System Concepts

NFS Path-Name Translation

B Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of component
name and directory vnode

B To make lookup faster, a directory name lookup cache on the
client’s side holds the vnodes for remote directory names

o | ,; (

Operating System Concepts 11.49 Silberschatz, Galvin and Gagne ©2005

NFS Remote Operations

B Nearly one-to-one correspondence between regular UNIX system
calls and the NFS protocol RPCs (except opening and closing files)

B NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance

B File-blocks cache — when a file is opened, the kernel checks with
the remote server whether to fetch or revalidate the cached
attributes

® Cached file blocks are used only if the corresponding cached
attributes are up to date

B File-attribute cache — the attribute cache is updated whenever new
attributes arrive from the server

B Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

/‘*»3 = >
Operating System Concepts 11.50 Silberschatz, Galvin and Gagne ©2005

Example: WAFL File System

B Used on Network Appliance “Filers” — distributed file system
appliances

B “Write-anywhere file layout”
B Serves up NFS, CIFS, http, ftp
B Random I/O optimized, write optimized
® NVRAM for write caching
B Similar to Berkeley Fast File System, with extensive modifications

fm 2 ; S V‘ ‘ »
Operating System Concepts 11.51 Silberschatz, Galvin and Gagne ©2005

The WAFL File Layout

root inode
inode file
free block map free inode map file in the file system... | <

Operating System Concepts 11.52 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

Snapshots in WAFL

root inode

(a) Before a snapshot.

root inode new shapshot

/

blockA||B||C||D||E

(b) After a snapshot, before any blocks change

root inode new snapshot

/

block A||B||C||D||E D

(c) After block D has changed toD".
11.53

Silberschatz, Galvin an& Gagne ©2,05

11.02

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Operating System Concepts 11.54 Silberschatz, Galvin and Gagne ©2005

End of Chapter 11
QIBBBIIGIIBDIICIBDIILIIBPIIG

