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Single and Multithreaded Processes
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Benefits

Responsiveness
B Resource Sharing
B Economy

B Utilization of MP Architectures

Operating System Concepts 4.4 Silberschatz, Galvin and Gagne ©2005



User Threads

B Thread management done by user-level threads library

B Three primary thread libraries:
® POSIX Pthreads
® Win32 threads
® Java threads
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Kernel Threads

B Supported by the Kernel

B Examples
® Windows XP/2000
Solaris
Linux
Tru64 UNIX
Mac OS X
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Multithreading Models

B Many-to-One
B One-to-One

B Many-to-Many
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Many-to-One

B Many user-level threads mapped to single kernel thread
B Examples:

® Solaris Green Threads

® GNU Portable Threads
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Many-to-One Model
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One-to-One

B Each user-level thread maps to kernel thread
B Examples

® Windows NT/XP/2000

® Linux

® Solaris 9 and later
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One-to-one Model

<«—— user thread
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Many-to-Many Model

B Allows many user level threads to be mapped to many kernel
threads

B Allows the operating system to create a sufficient number of
kernel threads

B Solaris prior to version 9
B Windows NT/2000 with the ThreadFiber package
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Many-to-Many Model

<«—— user thread

<«—— Kkernel thread
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Two-level Model

B Similar to M:M, except that it allows a user thread to be
bound to kernel thread

B Examples
® |RIX
® HP-UX
® Tru64 UNIX
® Solaris 8 and earlier
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Two-level Model

«—— user thread
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Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation

Signal handling

Thread pools

Thread specific data

Scheduler activations
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Semantics of fork() and exec()

B Does fork() duplicate only the calling thread or all threads?
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Thread Cancellation

B Terminating a thread before it has finished
B Two general approaches:

® Asynchronous cancellation terminates the target
thread immediately

® Deferred cancellation allows the target thread to
periodically check if it should be cancelled

fm 2 ; S V‘ ‘ »
Operating System Concepts 418 Silberschatz, Galvin and Gagne ©2005



Signal Handling

B Signals are used in UNIX systems to notify a process that a
particular event has occurred

B Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled
B Options:
® Deliver the signal to the thread to which the signal applies
® Deliver the signal to every thread in the process
® Deliver the signal to certain threads in the process
® Assign a specific threa to receive all signals for the process

Ve v "
Operating System Concepts 419 Silberschatz, Galvin and Gagne ©2005



Thread Pools

B Create a number of threads in a pool where they await work

B Advantages:
® Usually slightly faster to service a request with an existing
thread than create a new thread

® Allows the number of threads in the application(s) to be
bound to the size of the pool
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Thread Specific Data

B Allows each thread to have its own copy of data

B Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)
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Scheduler Activations

B Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads allocated
to the application

B Scheduler activations provide upcalls - a communication
mechanism from the kernel to the thread library

B This communication allows an application to maintain the
correct number kernel threads
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Pthreads

B A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

B API specifies behavior of the thread library,
implementation is up to development of the library

B Common in UNIX operating systems (Solaris, Linux,
Mac OS X)
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Windows XP Threads

B |mplements the one-to-one mapping
B Each thread contains
® Athreadid
® Register set
® Separate user and kernel stacks
® Private data storage area

B The register set, stacks, and private storage area are known
as the context of the threads

B The primary data structures of a thread include:
® ETHREAD (executive thread block)
® KTHREAD (kernel thread block)
® TEB (thread environment block)
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Linux Threads

B Linux refers to them as tasks rather than threads
B Thread creation is done through clone() system call

B clone() allows a child task to share the address space
of the parent task (process)
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Java Threads

B Java threads are managed by the JVM

B Java threads may be created by:

® Extending Thread class
® Implementing the Runnable interface
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Java Thread States

blocked
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