Module A: FreeBSD System
QIBBDDIGIIBIIIGIIBDIIGIIBDIIG

Module A: The FreeBSD System

History

Design Principles
Programmer Interface

User Interface

Process Management
Memory Management

File System

I/O System

Interprocess Communication

) " b y

Operating System Concepts A2 Silberschatz, Galvin and Gagne ©2005

History

B First developed in 1969 by Ken Thompson and Dennis Ritchie of the
Research Group at Bell Laboratories; incorporated features of other
operating systems, especially MULTICS.

B The third version was written in C, which was developed at Bell Labs
specifically to support UNIX.

B The most influential of the non-Bell Labs and non-AT&T UNIX
development groups — University of California at Berkeley (Berkeley
Software Distributions).

® 4BSD UNIX resulted from DARPA funding to develop a standard
UNIX system for government use.

® Developed for the VAX, 4.3BSD is one of the most influential
versions, and has been ported to many other platforms.

B Several standardization projects seek to consolidate the variant
flavors of UNIX leading to one programming interface to UNIX.

Operating System Concepts A.3 Silberschatz, Galvin and Gagne ©2005

History of UNIX Versions

1969 USG/USDL/ATTIS First £dition . Bell Labs Berkley
DSG/USO/USL | Research Sofﬁ»va_re
1973 Fifth lemon Distributions
1976 Sixth Edition \PDP-H
1977 PWB MERT CB UNIX 1BSD
VAX
1978 UNIX/RT 2oV 2BSD
——3BSD
1979 |
3.0 4.0B5D
1080 |
3.0.1 4.1BSD
1981 4.0.1 |
| 4.1aBSD
1982 5.0 System IIl _ | %EEEFSD
| Eighth| 4.1cBSD. |
1983 52 SystemV [XENIX 3 Edmoy | 2.98SD
Release 2
1085 /
1086
Ninth | _{4.3BSD|—.__
Ch System V o
1987 [Chorus] il o Edition 2.10BSO
1988 UNTY Tenth 4.3BSD
1089 p—_— System V Edition TaToe
000 Va Release 4 Plan 9 13850
Reno
1091
1092 4.4BSD
1993 T r r y l r

Operating System Concepts A4 Silberschatz, Galvin and Gagne 2065

Early Advantages of UNIX

B \Written in a high-level language.
B Distributed in source form.

B Provided powerful operating-system primitives on an inexpensive
platform.

B Small size, modular, clean design.

Operating System Concepts A5 Silberschatz, Galvin and Gagne ©2005

UNIX Design Principles

Designed to be a time-sharing system.
Has a simple standard user interface (shell) that can be replaced.
File system with multilevel tree-structured directories.

Files are supported by the kernel as unstructured sequences of
bytes.

Supports multiple processes; a process can easily create new
processes.

B High priority given to making system interactive, and providing
facilities for program development.

V = ":7 . o
Operating System Concepts A.6 Silberschatz, Galvin and Gagne ©2005

Programmer Interface

Like most computer systems, UNIX consists of two separable parts:

B Kernel: everything below the system-call interface and above
the physical hardware.

® Provides file system, CPU scheduling, memory
management, and other OS functions through system calls.

B Systems programs: use the kernel-supported system calls to
provide useful functions, such as compilation and file
manipulation.

Operating System Concepts A7 Silberschatz, Galvin and Gagne ©2005

4.4BSD Layer Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block 1/0 page replacement

character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

N 'l
Operating System Concepts A.8 Silberschatz, Galvin and Gagne ©2005

System Calls

B System calls define the programmer interface to UNIX

B The set of systems programs commonly available defines the user
Interface.

B The programmer and user interface define the context that the
kernel must support.

B Roughly three categories of system calls in UNIX.

® File manipulation (same system calls also support device
manipulation)

® Process control
® Information manipulation.

Ve v "
Operating System Concepts A9 Silberschatz, Galvin and Gagne ©2005

File Manipulation

B A file is a sequence of bytes; the kernel does not impose a
structure on files.

B Files are organized in tree-structured directories.

B Directories are files that contain information on how to find other
files.

B Path name: identifies a file by specifying a path through the
directory structure to the file.

® Absolute path names start at root of file system
® Relative path names start at the current directory

B System calls for basic file manipulation: create, open, read, write,
close, unlink, trunc.

Operating System Concepts A.10

Typical UNIX Directory Structure

VIMILINIX,

bin

lib

tmp

Operating System Concepts A1l Silberschatz, Galvin and Gagne ©2,05

Process Control

B A process is a program in execution.
B Processes are identified by their process identifier, an integer.
B Process control system calls

® fork creates a new process

® execve is used after a fork to replace on of the two processes’s
virtual memory space with a new program

® exit terminates a process

® A parent may wait for a child process to terminate; wait provides
the process id of a terminated Chl|d so that the parent can tell
which child terminated.

® wait3 allows the parent to collect performance statistics about the
child

B A zombie process results when the parent of a defunct child process
exits before the terminated child.

Operating System Concepts A.12 Silberschatz, Galvin and Gagne ©2005

lllustration of Process Control Calls

shell process parent process shell process
fork/ wait >

child process zombie process

program executes
execve
program

Operating System Concepts A.13 Silberschatz, Galvin and Gagne 2005

Process Control (Cont.)

B Processes communicate via pipes; queues of bytes between two
processes that are accessed by a file descriptor.

B All user processes are descendants of one original process, init.

B init forks a getty process: initializes terminal line parameters and
passes the user’s login name to login.

® Jogin sets the numeric user identifier of the process to that of
the user

® executes a shell which forks subprocesses for user commands.

Y 2 Rl

Operating System Concepts A.14 Silberschatz, Galvin and Gagne ©2005

Process Control (Cont.)

B setuid bit sets the effective user identifier of the process to the
user identifier of the owner of the file, and leaves the real user
identifier as it was.

B setuid scheme allows certain processes to have more than
ordinary privileges while still being executable by ordinary users.

R b
Operating System Concepts A.15 Silberschatz, Galvin and Gagne ©2005

Signals

B Facility for handling exceptional conditions similar to software
interrupts.

B The interrupt signal, SIGINT, is used to stop a command before
that command completes (usually produced by ~C).

B Signal use has expanded beyond dealing with exceptional events.
® Start and stop subprocesses on demand

® SIGWINCH informs a process that the window in which output
IS being displayed has changed size.

® Deliver urgent data from network connections.

ol 40D
ﬁ/";\ :’ o

Operating System Concepts A.16 Silberschatz, Galvin and Gagne ©2005

Process Groups

B Set of related processes that cooperate to accomplish a common
task.

B Only one process group may use a terminal device for I/O at any
time.

® The foreground job has the attention of the user on the
terminal.

® Background jobs — nonattached jobs that perform their function
without user interaction.

B Access to the terminal is controlled by process group signals.

- ¢
O e
V4 '«' L

Operating System Concepts A17 Silberschatz, Galvin and Gagne ©2005

Process Groups (Cont.)

B Each job inherits a controlling terminal from its parent.

® If the process group of the controlling terminal matches the
group of a process, that process is in the foreground.

® SIGTTIN or SIGTTOU freezes a background process that
attempts to perform 1/O; if the user foregrounds that process,
SIGCONT indicates that the process can now perform 1/O.

® SIGSTOP freezes a foreground process.

—

Operating System Concepts A.18 Silberschatz, Galvin and Gagne ©2005

Information Manipulation

B System calls to set and return an interval timer:
getitmer/setitmer.

B Calls to set and return the current time:
gettimeofday/settimeofday.

B Processes can ask for
® their process identifier: getpid
® their group identifier: getgid

® the name of the machine on which they are executing:
gethostname

Operating System Concepts A.19 Silberschatz, Galvin and Gagne ©2005

Library Routines

B The system-call interface to UNIX is supported and augmented by
a large collection of library routines

B Header files provide the definition of complex data structures used
in system calls.

B Additional library support is provided for mathematical functions,
network access, data conversion, etc.

R o "
Operating System Concepts A.20 Silberschatz, Galvin and Gagne ©2005

User Interface

B Programmers and users mainly deal with already existing systems
programs: the needed system calls are embedded within the
program and do not need to be obvious to the user.

B The most common systems programs are file or directory oriented.
® Directory: mkdir, rmdir, cd, pwd
® File: Is, cp, mv, rm

B Other programs relate to editors (e.g., emacs, vi) text formatters
(e.qg., troff, TEX), and other activities.

Operating System Concepts A.21 Silberschatz, Galvin and Gagne ©2005

Shells and Commands

B Shell - the user process which executes programs (also called
command interpreter).

B Called a shell, because it surrounds the kernel.

B The shell indicates its readiness to accept another command by
typing a prompt, and the user types a command on a single line.

B A typical command is an executable binary object file.

B The shell travels through the search path to find the command file,
which is then loaded and executed.

B The directories /bin and /usr/bin are almost always in the search
path.

NG
Operating System Concepts A.22 Silberschatz, Galvin and Gagne ©2005

Shells and Commands (Cont.)

B Typical search path on a BSD system:

(./home/prof/avi/bin /usr/local/bin /usr/ucb/bin/usr/bin)

B The shell usually suspends its own execution until the command
completes.

Operating System Concepts A.23

Standard /O

B Most processes expect three file descriptors to be open when they
start:

® standard input — program can read what the user types
® standard output — program can send output to user’s screen
® standard error — error output

B Most programs can also accept a file (rather than a terminal) for
standard input and standard output.

B The common shells have a simple syntax for changing what files
are open for the standard I/O streams of a process — I/O
redirection.

Operating System Concepts A.24

Standard I/O Redirection

command meaning of command

% Is > filea direct output of /s to file filea

% pr < filea > fileb input from filea and output to fileb

% lpr < fileb input from fileb

% % make program > & errs save both standard output and
standard error in a file

Operating System Concepts A.25 Silberschatz, Galvin and Gagne ©2005

Pipelines, Filters, and Shell Scripts

B Can coalesce individual commands via a vertical bar that tells the
shell to pass the previous command’s output as input to the
following command

% Is | pr| Ipr

B Filter — a command such as pr that passes its standard input to its
standard output, performing some processing on it.

B \Writing a new shell with a different syntax and semantics would
change the user view, but not change the kernel or programmer
interface.

B X Window System is a widely accepted iconic interface for UNIX.

Operating System Concepts A.26 Silberschatz, Galvin and Gagne ©2005

Process Management

B Representation of processes is a major design problem for
operating system.

B UNIX is distinct from other systems in that multiple processes can
be created and manipulated with ease.

B These processes are represented in UNIX by various control
blocks.

® Control blocks associated with a process are stored in the
kernel.

® Information in these control blocks is used by the kernel for
process control and CPU scheduling.

Operating System Concepts A.27 Silberschatz, Galvin and Gagne ©2005

Process Control Blocks

B The most basic data structure associated with processes is the
process structure.

® unique process identifier
® scheduling information (e.g., priority)
® pointers to other control blocks

B The virtual address space of a user process is divided into text
(program code), data, and stack segments.

B Every process with sharable text has a pointer form its process
structure to a text structure.

® always resident in main memory.
® records how many processes are using the text segment

® records were the page table for the text segment can be
found on disk when it is swapped.

Operating System Concepts

A.28

System Data Segment

B Most ordinary work is done in user mode; system calls are
performed in system mode.

B The system and user phases of a process never execute
simultaneously.

B a kernel stack (rather than the user stack) is used for a process
executing in system mode.

B The kernel stack and the user structure together compose the
system data segment for the process.

- g

Operating System Concepts A.29 Silberschatz, Galvin and Gagne ©2005

Finding parts of a process using process structure

Process

structure

L 4
text

user kernel
structure stack

system data structure

structure

resident tables

» stack
» Gdla
= text
user space

swappable process image

Operating System Concepts

A.30

Allocating a New Process Structure

B fork allocates a new process structure for the child process, and
copies the user structure.

® new page table is constructed

® new main memory is allocated for the data and stack segments
of the child process

® copying the user structure preserves open file descriptors, user
and group identifiers, signal handling, etc.

o | ,; (

Operating System Concepts A.31 Silberschatz, Galvin and Gagne ©2005

Allocating a New Process Structure (Cont.)

B vfork does not copy the data and stack to t he new process; the
new process simply shares the page table of the old one.

® new user structure and a new process structure are still created

® commonly used by a shell to execute a command and to wait
for its completion

B A parent process uses vfork to produce a child process; the child
uses execve to change its virtual address space, so there is no
need for a copy of the parent.

B Using vfork with a large parent process saves CPU time, but can
be dangerous since any memory change occurs in both processes
until execve occurs.

B execve creates no new process or user structure; rather the text
and data of the process are replaced.

Y »=
Operating System Concepts A.32 Silberschatz, Galvin and Gagne ©2005

CPU Scheduling

B Every process has a scheduling priority associated with it; larger
numbers indicate lower priority.

B Negative feedback in CPU scheduling makes it difficult for a single
process to take all the CPU time.

B Process aging is employed to prevent starvation.

B When a process chooses to relinquish the CPU, it goes to sleep on
an event.

B When that event occurs, the system process that knows about it
calls wakeup with the address corresponding to the event, and all
processes that had done a sleep on the same address are put in
the ready queue to be run.

Operating System Concepts A.33 Silberschatz, Galvin and Gagne ©2005

Memory Management

B The initial memory management schemes were constrained in size
by the relatively small memory resources of the PDP machines on
which UNIX was developed.

B Pre 3BSD system use swapping exclusively to handle memory
contention among processes: If there is too much contention,
processes are swapped out until enough memory is available.

B Allocation of both main memory and swap space is done first-fit.

Ve v "
Operating System Concepts A.34 Silberschatz, Galvin and Gagne ©2005

Memory Management (Cont.)

B Sharable text segments do not need to be swapped; results in less
swap traffic and reduces the amount of main memory required for
multiple processes using the same text segment.

B The scheduler process (or swapper) decides which processes to
swap in or out, considering such factors as time idle, time in or out
of main memory, size, etc.

B |nf.3BSD, swap space is allocated in pieces that are multiples of
power of 2 and minimum size, up to a maximum size determined by
the size or the swap-space partition on the disk.

Operating System Concepts A.35

Paging

B Berkeley UNIX systems depend primarily on paging for memory-
contention management, and depend only secondarily on
swapping.

B Demand paging — When a process needs a page and the page is
not there, a page fault tot he kernel occurs, a frame of main
memory is allocated, and the proper disk page is read into the
frame.

B A pagedaemon process uses a modified second-chance page-
replacement algorithm to keep enough free frames to support the
executing processes.

B |f the scheduler decides that the paging system is overloaded,
processes will be swapped out whole until the overload is relieved.

Operating System Concepts A.36 Silberschatz, Galvin and Gagne ©2005

File System

B The UNIX file system supports two main objects: files and
directories.

B Directories are just files with a special format, so the representation
of a file is the basic UNIX concept.

Operating System Concepts A.37

Blocks and Fragments

B Most of the file system is taken up by data blocks.

B 4.2BSD uses two block sized for files which have no indirect
blocks:

® All the blocks of a file are of a large block size (such as 8K),
except the last.

® The last block is an appropriate multiple of a smaller fragment
size (i.e., 1024) to fill out the file.

® Thus, afile of size 18,000 bytes would have two 8K blocks and
one 2K fragment (which would not be filled completely).

V = ":7 . o
Operating System Concepts A.38 Silberschatz, Galvin and Gagne ©2005

Blocks and Fragments (Cont.)

B The block and fragment sizes are set during file-system creation
according to the intended use of the file system:

® If many small files are expected, the fragment size should be
small.

® |If repeated transfers of large files are expected, the basic block
size should be large.

B The maximum block-to-fragment ratio is 8 : 1; the minimum block
size is 4K (typical choices are 4096 : 512 and 8192 : 1024).

. —

Operating System Concepts A.39 Silberschatz, Galvin and Gagne ©2005

Inodes

B Afile is represented by an inode — a record that stores information
about a specific file on the disk.

B The inode also contains 15 pointer to the disk blocks containing the
file’s data contents.

® First 12 point to direct blocks.
® Next three point to indirect blocks

» First indirect block pointer is the address of a single indirect
block — an index block containing the addresses of blocks
that do contain data.

» Second is a double-indirect-block pointer, the address of a
block that contains the addresses of blocks that contain
pointer to the actual data blocks.

» A triple indirect pointer is not needed; files with as many as
232 bytes will use only double indirection.

Operating System Concepts A.40 Silberschatz, Galvin and Gagne ©2005

Directories

B The inode type field distinguishes between plain files and
directories.

B Directory entries are of variable length; each entry contains first the
length of the entry, then the file name and the inode number.

B The user refers to a file by a path name,whereas the file system
uses the inode as its definition of a file.

® The kernel has to map the supplied user path name to an inode
® Directories are used for this mapping.

NG
Operating System Concepts A4l Silberschatz, Galvin and Gagne ©2005

Directories (Cont.)

B First determine the starting directory:

® |f the first character is “/”, the starting directory is the root
directory.

® For any other starting character, the starting directory is the
current directory.

B The search process continues until the end of the path name is
reached and the desired inode is returned.

B Once the inode is found, a file structure is allocated to point to the
inode.

B 4.3BSD improved file system performance by adding a directory
name cache to hold recent directory-to-inode translations.

NG
Operating System Concepts A.42 Silberschatz, Galvin and Gagne ©2005

Mapping of a File Descriptor to an Inode

B System calls that refer to open files indicate the file is passing a file
descriptor as an argument.

B The file descriptor is used by the kernel to index a table of open
files for the current process.

B Each entry of the table contains a pointer to a file structure.

This file structure in turn points to the inode.

B Since the open file table has a fixed length which is only setable at
boot time, there is a fixed limit on the number of concurrently open
files in a system.

V = ":7 . o
Operating System Concepts A.43 Silberschatz, Galvin and Gagne ©2005

File-System Control Blocks

data
> blocks
e 2
read (4, ...) |_’ :
| = sync
i :

tables of file-structure in-core inode

open files table inode list

(per process) list
user space system space disk space

Operating System Concepts A.44 Silberschatz, Galvin and Gagne 2005

Disk Structures

B The one file system that a user ordinarily sees may actually consist
of several physical file systems, each on a different device.

B Partitioning a physical device into multiple file systems has several
benefits.

® Different file systems can support different uses.

® Reliability is improved

® Can improve efficiency by varying file-system parameters.
O

Prevents one program form using all available space for a large
file.

Speeds up searches on backup tapes and restoring partitions
from tape.

Operating System Concepts A.45

Disk Structures (Cont.)

B The root file system is always available on a drive.

B Other file systems may be mounted — i.e., integrated into the
directory hierarchy of the root file system.

B The following figure illustrates how a directory structure is
partitioned into file systems, which are mapped onto logical
devices, which are partitions of physical devices.

R o "
Operating System Concepts A.46 Silberschatz, Galvin and Gagne ©2005

Mapping File System to Physical Devices

f_
I e
L [—
7RI — N root
N e
;im =
— > \\‘¥/’/
—_—
A/
e N
Elcd
. .
% \\—//
A
logical file system file systems logical devices physical devices

Operating System Concepts A.47 Silberschatz, Galvin and Gagne 2065

Implementations

B The user interface to the file system is simple and well defined,
allowing the implementation of the file system itself to be changed
without significant effect on the user.

B For Version 7, the size of inodes doubled, the maximum file and file
system sized increased, and the details of free-list handling and
superblock information changed.

B |n 4.0BSD, the size of blocks used in the file system was increased
form 512 bytes to 1024 bytes — increased internal fragmentation, but
doubled throughput.

B 4.2BSD added the Berkeley Fast File System, which increased speed,
and included new features.

® New directory system calls
® truncate calls
® Fast File System found in most implementations of UNIX.

Operating System Concepts A.48 Silberschatz, Galvin and Gagne ©2005

Layout and Allocation Policy

B The kernel uses a <logical device number, inode number> pair to
identify a file.

® The logical device number defines the file system involved.
® The inodes in the file system are numbered in sequence.

B 4.3BSD introduced the cylinder group — allows localization of the
blocks in a file.

® Each cylinder group occupies one or more consecutive
cylinders of the disk, so that disk accesses within the cylinder
group require minimal disk head movement.

® Every cylinder group has a superblock, a cylinder block, an
array of inodes, and some data blocks.

NG
Operating System Concepts A.49 Silberschatz, Galvin and Gagne ©2005

4.3BSD Cylinder Group

data blocks

superblock

cylinder block

Inodes

data blocks

Operating System Concepts A.50

I/O System

B The I/O system hides the peculiarities of 1/0 devices from the bulk
of the kernel.

B Consists of a buffer caching system, general device driver code,
and drivers for specific hardware devices.

B Only the device driver knows the peculiarities of a specific device.

R b
Operating System Concepts A.51 Silberschatz, Galvin and Gagne ©2005

4.3 BSD Kernel I/O Structure

system-call interface to the kernel
socket plain file cookod v raw tty cooked TTY
protocols | file block block interface |jine
system interface | interface discipline
Pniff(e}l::ke block-device driver character-device driver
the hardware

3 (
, R .,—"." 5 f

Operating System Concepts A.52 Silberschatz, Galvin and\ Gagne ©2605

Block Buffer Cache

B Consist of buffer headers, each of which can point to a piece of
physical memory, as well as to a device number and a block
number on the device.

B The buffer headers for blocks not currently in use are kept in
several linked lists:

® Buffers recently used, linked in LRU order (LRU list).
® Buffers not recently used, or without valid contents (AGE list).
® EMPTY buffers with no associated physical memory.

B When a block is wanted from a device, the cache is searched.

If the block is found it is used, and no I/O transfer is necessary.

B Ifitis not found, a buffer is chosen from the AGE list, or the LRU
list if AGE is empty.

NG
Operating System Concepts A.53 Silberschatz, Galvin and Gagne ©2005

Block Buffer Cache (Cont.)

B Buffer cache size effects system performance; if it is large enough,
the percentage of cache hits can be high and the number of actual

I/O transfers low.

B Data written to a disk file are buffered in the cache, and the disk
driver sorts its output queue according to disk address — these
actions allow the disk driver to minimize disk head seeks and to
write data at times optimized for disk rotation.

s
O e
v R il

Operating System Concepts A.54 Silberschatz, Galvin and Gagne ©2005

Raw Device Interfaces

B Almost every block device has a character interface, or raw device
interface — unlike the block interface, it bypasses the block buffer
cache.

B Each disk driver maintains a queue of pending transfers.
B Each record in the queue specifies:

® whether it is a read or a write

® a main memory address for the transfer

® a device address for the transfer

® a transfer size

B |t is simple to map the information from a block buffer to what is
required for this queue.

Ve v "
Operating System Concepts A.55 Silberschatz, Galvin and Gagne ©2005

C-Lists

B Terminal drivers use a character buffering system which involves
keeping small blocks of characters in linked lists.

B A write system call to a terminal enqueues characters on a list for
the device. An initial transfer is started, and interrupts cause
dequeueing of characters and further transfers.

B |nput is similarly interrupt driven.

B |tis also possible to have the device driver bypass the canonical
gueue and return characters directly form the raw queue — raw
mode (used by full-screen editors and other programs that need to
react to every keystroke).

Operating System Concepts A.56 Silberschatz, Galvin and Gagne ©2005

Interprocess Communication

B The pipe is the IPC mechanism most characteristic of UNIX.

® Permits a reliable unidirectional byte stream between two
processes.
® A benefit of pipes small size is that pipe data are seldom written
to disk; they usually are kept in memory by the normal block
buffer cache.
B In 4.3BSD, pipes are implemented as a special case of the socket

mechanism which provides a general interface not only to facilities
such as pipes, which are local to one machlne but also to

networking facilities.
B The socket mechanism can be used by unrelated processes.

Operating System Concepts A.57 Silberschatz, Galvin and Gagne ©2005

Sockets

B A socket is an endpont of communication.

B An in-use socket it usually bound with an address; the nature of the
address depends on the communication domain of the socket.

B A characteristic property of a domain is that processes
communication in the same domain use the same address format.

B A single socket can communicate in only one domain — the three
domains currently implemented in 4.3BSD are:

® the UNIX domain (AF_UNIX)
® the Internet domain (AF_INET)
® the XEROX Network Service (NS) domain (AF_NS)

Operating System Concepts A.58 Silberschatz, Galvin and Gagne ©2005

Socket Types

B Stream sockets provide reliable, duplex, sequenced data streams.
Supported in Internet domain by the TCP protocol. In UNIX domain,
pipes are implemented as a pair of communicating stream sockets.

B Sequenced packet sockets provide similar data streams, except that
record boundaries are provided. Used in XEROX AF NS protocol.

B Datagram sockets transfer messages of variable size in either
direction. Supported in Internet domain by UDP protocol

B Reliably delivered message sockets transfer messages that are
guaranteed to arrive. Currently unsupported.

B Raw sockets allow direct access by processes to the protocols that
support the other socket types; e.g., in the Internet domain, it is
possible to reach TCP, IP beneath that, or a deeper Ethernet protocol.
Useful for developing new protocols.

Operating System Concepts A.59 Silberschatz, Galvin and Gagne ©2005

Socket System Calls

B The socket call creates a socket; takes as arguments specifications of
the communication domain, socket type, and protocol to be used and
returns a small integer called a socket descriptor.

B A name is bound to a socket by the bind system call.

The connect system call is used to initiate a connection.

B A server process uses socket to create a socket and bind to bind the
well-known address of its service to that socket.

® Uses listen to tell the kernel that it is ready to accept connections
from clients.

® Uses accept to accept individual connections.

® Uses fork to produce a new process after the accept to service
the client while the original server process continues to listen for
more connections.

e~y "4,,,:? & Q; X
Ve vt

Operating System Concepts A.60 Silberschatz, Galvin and Gagne ©2005

Socket System Calls (Cont.)

B The simplest way to terminate a connection and to destroy the
associated socket is to use the close system call on its socket
descriptor.

B The select system call can be used to multiplex data transfers on
several file descriptors and /or socket descriptors

Operating System Concepts A.61 Silberschatz, Galvin and Gagne ©2005

Network Support

B Networking support is one of the most important features in
4.3BSD.

B The socket concept provides the programming mechanism to
access other processes, even across a network.

B Sockets provide an interface to several sets of protocols.
B Almost all current UNIX systems support UUCP.

B 4.3BSD supports the DARPA Internet protocols UDP, TCP, IP, and
ICMP on a wide range of Ethernet, token-ring, and ARPANET
interfaces.

B The 4.3BSD networking implementation, and to a certain extent the
socket facility, is more oriented toward the ARPANET Reference
Model (ARM).

/‘*»3 %
Operating System Concepts A.62 Silberschatz, Galvin and Gagne ©2005

Network Reference models and Layering

ISO ARPANET
reference reference r;geBéD ;xaer'rl}ﬁle
model model y y g
application user programs e
: process and libraries
presentation applications
session transport sockets sock_stream
TCP
host—host protocol
network I
data link network network Ethernet
hardware interface interfaces driver
network network interlan
hardware hardware controller

,) i G

Operating System Concepts A.63 Silberschatz, Galvin and Gagne ©2005

End of Module A
GIBBDIIG IEBIIIG IBBDIIG BB PG

