Chapter 17: Distributed-File Systems
QIBBBIIGIIBDIICIIBD DI IIBDIIG

Chapter 17 Distributed-File Systems

Background

Naming and Transparency
Remote File Access

Stateful versus Stateless Service
File Replication

An Example: AFS

Operating System Concepts 17.2 Silberschatz, Galvin and Gagne ©2005

Chapter Objectives

B To explain the naming mechanism that provides location
transparency and independence

B To describe the various methods for accessing distributed files

To contrast stateful and stateless distributed file servers

B To show how replication of files on different machines in a
distributed file system is a useful redundancy for improving
availability

B To introduce the Andrew file system (AFS) as an example of a
distributed file system

Ve v "
Operating System Concepts 17.3 Silberschatz, Galvin and Gagne ©2005

Background

B Distributed file system (DFS) — a distributed implementation of the
classical time-sharing model of a file system, where multiple users
share files and storage resources

B A DFS manages set of dispersed storage devices

B Overall storage space managed by a DFS is composed of different,
remotely located, smaller storage spaces

B There is usually a correspondence between constituent storage
spaces and sets of files

Operating System Concepts 174

DFS Structure

B Service — software entity running on one or more machines and
providing a particular type of function to a priori unknown clients

B Server — service software running on a single machine

B Client — process that can invoke a service using a set of
operations that forms its client interface

B A client interface for a file service is formed by a set of primitive file
operations (create, delete, read, write)

B Client interface of a DFS should be transparent, i.e., not distinguish
between local and remote files

Operating System Concepts 17.5 Silberschatz, Galvin and Gagne ©2005

Naming and Transparency

B Naming — mapping between logical and physical objects

B Multilevel mapping — abstraction of a file that hides the details of
how and where on the disk the file is actually stored

B A transparent DFS hides the location where in the network the file
IS stored

B For afile being replicated in several sites, the mapping returns a
set of the locations of this file’s replicas; both the existence of
multiple copies and their location are hidden

Ve v "
Operating System Concepts 17.6 Silberschatz, Galvin and Gagne ©2005

Naming Structures

B | ocation transparency — file name does not reveal the file’s
physical storage location

® File name still denotes a specific, although hidden, set of
physical disk blocks

® Convenient way to share data

® Can expose correspondence between component units and
machines

B |[ocation independence — file name does not need to be changed
when the file’s physical storage location changes

® Better file abstraction
® Promotes sharing the storage space itself

® Separates the naming hierarchy form the storage-devices
hierarchy

Ve v

Operating System Concepts 17.7 Silberschatz, Galvin and Gagne ©2005

Naming Schemes — Three Main Approaches

B Files named by combination of their host name and local name;
guarantees a unique systemwide name

B Attach remote directories to local directories, giving the appearance
of a coherent directory tree; only previously mounted remote
directories can be accessed transparently

B Total integration of the component file systems
® A single global name structure spans all the files in the system

® |If a server is unavailable, some arbitrary set of directories on
different machines also becomes unavailable

EENNN i e O
4 - W™

Operating System Concepts 17.8 Silberschatz, Galvin and Gagne ©2005

Remote File Access

B Remove-service mechanism is one transfer approach

B Reduce network traffic by retaining recently accessed disk blocks in
a cache, so that repeated accesses to the same information can be
handled locally

® |If needed data not already cached, a copy of data is brought
from the server to the user

® Accesses are performed on the cached copy

® Files identified with one master copy residing at the server
machine, but copies of (parts of) the file are scattered in
different caches

® Cache-consistency problem — keeping the cached copies
consistent with the master file

» Could be called network virtual memory

o v ;
‘/ P ;; e

Operating System Concepts 17.9 Silberschatz, Galvin and Gagne ©2005

Cache Location — Disk vs. Main Memory

B Advantages of disk caches
® More reliable

® Cached data kept on disk are still there during recovery and
don’t need to be fetched again

B Advantages of main-memory caches:
® Permit workstations to be diskless
® Data can be accessed more quickly
® Performance speedup in bigger memories
-

Server caches (used to speed up disk I/0O) are in main memory
regardless of where user caches are located; using main-
memory caches on the user machine permits a single caching
mechanism for servers and users

Operating System Concepts 17.10 Silberschatz, Galvin and Gagne ©2005

Cache Update Policy

B Write-through — write data through to disk as soon as they are placed on
any cache

® Reliable, but poor performance

B Delayed-write — modifications written to the cache and then written through
to the server later

® Write accesses complete quickly; some data may be overwritten
before they are written back, and so need never be written at all

® Poor reliability; unwritten data will be lost whenever a user machine
crashes

® Variation — scan cache at regular intervals and flush blocks that have
been modified since the last scan

® Variation — write-on-close, writes data back to the server when the file
is closed

» Best for files that are open for long periods and frequently modified

Operating System Concepts 17.11

Cachefs and its Use of Caching

NFS server

memory cache
(write-throughh ({ | | oo T oo

—(network 6— workstation

memory cache
(write-back)

e

local disk storage

\server disk storage]

disk object

disk cache
(write-through)

\

Operating System Concepts 17.12 Silberschatz, Galvin and Gagne 205

Consistency

B |s |ocally cached copy of the data consistent with the master copy?

B Client-initiated approach
® Client initiates a validity check

® Server checks whether the local data are consistent with the
master copy

B Server-initiated approach
® Server records, for each client, the (parts of) files it caches
® When server detects a potential inconsistency, it must react

R o "
Operating System Concepts 17.13 Silberschatz, Galvin and Gagne ©2005

Comparing Caching and Remote Service

B |n caching, many remote accesses handled efficiently by the local
cache:; most remote accesses will be served as fast as local ones

B Servers are contracted only occasionally in caching (rather than for
each access)

® Reduces server load and network traffic
® Enhances potential for scalability

B Remote server method handles every remote access across the
network; penalty in network traffic, server load, and performance

B Total network overhead in transmitting big chunks of data (caching)
IS lower than a series of responses to specific requests (remote-
service)

Operating System Concepts 17.14

Caching and Remote Service (Cont.)

B Caching is superior in access patterns with infrequent writes

® With frequent writes, substantial overhead incurred to
overcome cache-consistency problem

B Benefit from caching when execution carried out on machines with
either local disks or large main memories

B Remote access on diskless, small-memory-capacity machines
should be done through remote-service method

B |n caching, the lower intermachine interface is different form the
upper user interface

B |In remote-service, the intermachine interface mirrors the local user-
file-system interface

Operating System Concepts 17.15

Stateful File Service

B Mechanism
® Client opens a file

® Server fetches information about the file from its disk, stores it
in its memory, and gives the client a connection identifier
unique to the client and the open file

® |dentifier is used for subsequent accesses until the session
ends

® Server must reclaim the main-memory space used by clients
who are no longer active

B |ncreased performance
® Fewer disk accesses

® Stateful server knows if a file was opened for sequential access
and can thus read ahead the next blocks

Operating System Concepts 17.16 Silberschatz, Galvin and Gagne ©2005

Stateless File Server

Avoids state information by making each request self-contained

B Each request identifies the file and position in the file

No need to establish and terminate a connection by open and close
operations

Operating System Concepts 17.17

Distinctions Between Stateful & Stateless Service

B Failure Recovery
® A stateful server loses all its volatile state in a crash

» Restore state by recovery protocol based on a dialog with
clients, or abort operations that were underway when the
crash occurred

» Server needs to be aware of client failures in order to
reclaim space allocated to record the state of crashed client
processes (orphan detection and elimination)

® With stateless server, the effects of server failure sand
recovery are almost unnoticeable

» A newly reincarnated server can respond to a self-contained
request without any difficulty

Operating System Concepts 17.18

Distinctions (Cont.)

B Penalties for using the robust stateless service:
® |onger request messages
® slower request processing
® additional constraints imposed on DFS design

B Some environments require stateful service

® A server employing server-initiated cache validation cannot
provide stateless service, since it maintains a record of which
files are cached by which clients

® UNIX use of file descriptors and implicit offsets is inherently
stateful; servers must maintain tables to map the file
descriptors to inodes, and store the current offset within a file

. o =
Operating System Concepts 17.19 Silberschatz, Galvin and Gagne ©2005

File Replication

B Replicas of the same file reside on failure-independent machines

B Improves availability and can shorten service time

B Naming scheme maps a replicated file name to a particular replica
® Existence of replicas should be invisible to higher levels

® Replicas must be distinguished from one another by different
lower-level names

B Updates — replicas of a file denote the same logical entity, and thus
an update to any replica must be reflected on all other replicas

B Demand replication — reading a nonlocal replica causes it to be
cached locally, thereby generating a new nonprimary replica.

/‘*»3 %
Operating System Concepts 17.20 Silberschatz, Galvin and Gagne ©2005

An Example: AFS

B A distributed computing environment (Andrew) under development
since 1983 at Carnegie-Mellon University, purchased by IBM and
released as Transarc DFS, now open sourced as OpenAFS

B AFS tries to solve complex issues such as uniform name space,
location-independent file sharing, client-side caching (with cache
consistency), secure authentication (via Kerberos)

® Also includes server-side caching (via replicas), high availability
® Can span 5,000 workstations

NG
Operating System Concepts 17.21 Silberschatz, Galvin and Gagne ©2005

ANDREW (Cont.)

B Clients are presented with a partitioned space of file names: a
local name space and a shared name space

B Dedicated servers, called Vice, present the shared name space to
the clients as an homogeneous, identical, and location transparent
file hierarchy

B The local name space is the root file system of a workstation, from
which the shared name space descends

B Workstations run the Virtue protocol to communicate with Vice, and
are required to have local disks where they store their local name
space |

B Servers collectively are responsible for the storage and
management of the shared name space

Operating System Concepts 17.22 Silberschatz, Galvin and Gagne ©2005

ANDREW (Cont.)

B Clients and servers are structured in clusters interconnected by a
backbone LAN

B A cluster consists of a collection of workstations and a cluster
server and is connected to the backbone by a router

B A key mechanism selected for remote file operations is whole file
caching

® Opening a file causes it to be cached, in its entirety, on the
local disk |

4 = o
Operating System Concepts 17.23 Silberschatz, Galvin and Gagne ©2005

ANDREW Shared Name Space

B Andrew's volumes are small component units associated with the
files of a single client

B A fid identifies a Vice file or directory - A fid is 96 bits long and has
three equal-length components:

® volume number

® vnode number — index into an array containing the inodes of
files in a single volume

® uniquifier — allows reuse of vnode numbers, thereby keeping
certain data structures, compact

B Fids are location transparent; therefore, file movements from server
to server do not invalidate cached directory contents

B | ocation information is kept on a volume basis, and the information
IS replicated on each server

Operating System Concepts 17.24

ANDREW File Operations

B Andrew caches entire files form servers

® A client workstation interacts with Vice servers only during
opening and closing of files

B Venus - caches files from Vice when they are opened, and stores
modified copies of files back when they are closed

B Reading and writing bytes of a file are done by the kernel without
Venus intervention on the cached copy

B Venus caches contents of directories and symbolic links, for path-
name translation

B Exceptions to the caching policy are modifications to directories
that are made directly on the server responsibility for that directory

. o =
Operating System Concepts 17.25 Silberschatz, Galvin and Gagne ©2005

ANDREW Implementation

B Client processes are interfaced to a UNIX kernel with the usual set
of system calls

B Venus carries out path-name translation component by component

B The UNIX file system is used as a low-level storage system for both
servers and clients

® The client cache is a local directory on the workstation’s disk

B Both Venus and server processes access UNIX files directly by
their inodes to avoid the expensive path name-to-inode translation
routine

Operating System Concepts 17.26 Silberschatz, Galvin and Gagne ©2005

ANDREW Implementation (Cont.)

B Venus manages two separate caches:
® one for status
® one for data
B | RU algorithm used to keep each of them bounded in size

B The status cache is kept in virtual memory to allow rapid servicing
of stat (file status returning) system calls

B The data cache is resident on the local disk, but the UNIX 1/O
buffering mechanism does some caching of the disk blocks in
memory that are transparent to Venus

R o "
Operating System Concepts 17.27 Silberschatz, Galvin and Gagne ©2005

End of Chapter 17
QIBBBIIGIIBDIICIBDIILIIBPIIG

Fig. 17.01

NFS server

memory cache
(write-through) 55000 MMM _Gos

/" \ —(network 9— workstation

server disk storage

w

disk object

S~

memory cache
(write-back)

¥///

disk cache
¢ (write-through)

Operating System Concepts 17.29 Silberschatz, Galvin and Gagne 205

