Chapter 5: CPU Scheduling
QIBBBIIGIIBDIICIIBD DI IIBDIIG

Chapter 5: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling

Thread Scheduling

Operating Systems Examples
Java Thread Scheduling

Algorithm Evaluation

Operating System Concepts 5.2

Basic Concepts

B Maximum CPU utilization obtained with multiprogramming

B CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and 1/0 wait

B CPU burst distribution

Operating System Concepts 5.3

Operating System Concepts

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

}

CPU burs

[/O burst

CPU burs

[/O burst

CPU burs

[/O burst

54

Alternating Sequence of CPU And I/O Bursts

Silberschatz, Galvin and Gagne 2005

Histogram of CPU-burst Times

frequency

Operating System Concepts

160

140

s
N
o

o
o

(0]
o

(o)}
o

~
o

N
o

h 4

16 24
burst duration (milliseconds)

oi5

32

40

Silberschatz, Galvin anc] Gagne 25

CPU Scheduler

B Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

B CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
B Scheduling under 1 and 4 is nonpreemptive
B All other scheduling is preemptive |

Operating System Concepts 5.6 Silberschatz, Galvin and Gagne ©2005

Dispatcher

B Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

® switching context
® switching to user mode

® jumping to the proper location in the user program to restart
that program

B Dispatch latency — time it takes for the dispatcher to stop one
process and start another running

V = ":7 . o
Operating System Concepts 5.7 Silberschatz, Galvin and Gagne ©2005

Scheduling Criteria

B CPU utilization — keep the CPU as busy as possible

B Throughput — # of processes that complete their execution
per time unit

B Turnaround time — amount of time to execute a particular
process

B Waiting time — amount of time a process has been waiting
in the ready queue

B Response time — amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)

Ve v "
Operating System Concepts 5.8 Silberschatz, Galvin and Gagne ©2005

Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time

. v - (
Operating System Concepts 5.9 STl G e Csaie O2i5E

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

B Waiting time for P, =0; P, =24, P,= 27
B Average waiting time: (0 + 24 + 27)/3 = 17

g+ [
s, A &
W

Operating System Concepts 5.10 Silberschatz, Galvin and Gagne ©2005

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
PZ ’ P3 ! Pl
B The Gantt chart for the schedule is:

P, P, P,

0 3 6 30
Waiting time for P, =6;P,=0.P,= 3

i
B Average waiting time: (6 +0+ 3)/3=3
B Much better than previous case

N

Convoy effect short process behind long process

Operating System Concepts 5.11 Silberschatz, Galvin and Gagne ©2005

Shortest-Job-First (SJR) Scheduling

B Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time

B Two schemes:

® nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst

® preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

B SJF is optimal — gives minimum average waiting time for a given
set of processes

Ve v "
Operating System Concepts 5.12 Silberschatz, Galvin and Gagne ©2005

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
B SJF (non-preemptive)
P, P, P, P,
I I I I I I I I I I I I
T T T T T
0 3 7 8 12 16

M Average waitingtime=(0+6 +3+7)/4 =4

Operating System Concepts 5,98}

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
B SJF (preemptive)
P, P, | P, P, P, P,
I I I I I I I I I
| | | T I
0 2 A 5 7 11 16

B Average waitingtime=(9+1+0+2)/4=3

Operating System Concepts

5.14

Determining Length of Next CPU Burst

B Can only estimate the length

B Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t =actual lenght o n" CPU burst

2. 7, ,= predicted value for the next CPU burst
3. a,0<a<l

4. Define 7, ,=at,+(1-alz,.

n

Operating System Concepts 5.15 Silberschatz, Galvin and Gagne ©2005

Prediction of the Length of the Next CPU Burst

12
T, 10

8 =
t 6

_/
4 b
2 L.
l | | I I | | |
time ———

CPU burst (t) 6 4 6 4 13 13 13
"guess" (t) 10 8 6 6 5 9 11 12

Operating System Concepts 5.16 Silberschatz, Galvin and Gagne 2005

Examples of Exponential Averaging

B o=0
® T = Ty
® Recent history does not count
B o=l
® T =0 tn
® Only the actual last CPU burst counts
B |f we expand the formula, we get:
T.,=at+1l-o)at -1+ ...
+l-a)at, ;+ ..
+(1 -)n " T

B Since both a and (1 - a) are less than or equal to 1, each
successive term has less weight than its predecessor

Operating System Concepts 5.17

Priority Scheduling

B A priority number (integer) is associated with each process

B The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

® Preemptive
® nonpreemptive

B SJF is a priority scheduling where priority is the predicted next CPU
burst time

B Problem = Starvation — low priority processes may never execute

B Solution = Aging — as time progresses increase the priority of the
process

Ve v "
Operating System Concepts 5.18 Silberschatz, Galvin and Gagne ©2005

Round Robin (RR)

B Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

B |[f there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more

than (n-1)q time units.
B Performance
® qglarge O FIFO

® gsmall O g must be large with respect to context switch,
otherwise overhead is too high

Operating System Concepts 5.19 Silberschatz, Galvin and Gagne ©2005

Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P, 24

B The Gantt chart is:

PP, |P,|P, | P |P,|P, | P, |P,|P,

O 20 37 57 77 97 117 121 134 154 162

B Typically, higher average turnaround than SJF, but better response

Operating System Concepts 5.20

Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9
o 1 2 3 4 5 6 7 8 9 10

Operating System Concepts 5.21 Silberschatz, Galvin and Gagne 2005

process | time

12.5

12.0 P
PS
P4

~N = W

£ 115
% 110/\ \
s Y \
£ 105 °
3
© 10.0
@
> 95
9.0

1 2 3 4 5 6 7
time quantum

Operating System Concepts 5.22 Silberschatz, Galvin and Gagne ©2005

Multilevel Queue

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

B Each queue has its own scheduling algorithm
® foreground — RR
® background — FCFS

B Scheduling must be done between the queues

® Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

® Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

® 20% to background in FCFS

Ve v

Operating System Concepts 5.23 Silberschatz, Galvin and Gagne ©2005

Multilevel Queue Scheduling

highest priority
> interactive processes E—
— interactive editing processes m—
> batch processes m—
student processes m—
lowest priority

Operating System Concepts 5.24 Silberschatz, Galvin and Gagne ©265

Multilevel Feedback Queue

B A process can move between the various queues; aging can be
Implemented this way

B Multilevel-feedback-queue scheduler defined by the following
parameters:

® number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service

V = ":7 . o
Operating System Concepts 5.25 Silberschatz, Galvin and Gagne ©2005

Example of Multilevel Feedback Queue

B Three queues:
® Q,— RR with time quantum 8 milliseconds
® Q, - RRtime quantum 16 milliseconds
® Q,-FCFS

B Scheduling

® A new job enters queue Q, which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q,.

® At Q, job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted and
moved to queue Q,.

Operating System Concepts 5.26 Silberschatz, Galvin and Gagne ©2005

Multilevel Feedback Queues

>
quantum = 8
' >
quantum = 16
r

Operating System Concepts 5.27 Silberschatz, Galvin and Gagne 2005

Multiple-Processor Scheduling

B CPU scheduling more complex when multiple CPUs are
available

B Homogeneous processors within a multiprocessor

Load sharing

B Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

fm 2 ; S V‘ ‘ »
Operating System Concepts 5.28 Silberschatz, Galvin and Gagne ©2005

Real-Time Scheduling

B Hard real-time systems — required to complete a
critical task within a guaranteed amount of time

B Soft real-time computing — requires that critical
processes receive priority over less fortunate ones

Operating System Concepts 5.29

Thread Scheduling

B | ocal Scheduling — How the threads library decides which
thread to put onto an available LWP

B Global Scheduling — How the kernel decides which kernel
thread to run next

Operating System Concepts 5.30

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv([])
{
int 1i;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM) ;
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy (&attr, SCHED OTHER) ;
/* create the threads */
for (i = 0; i < NUM THREADS; i++)
pthread create(&tid[i], &attr,runner,NULL) ;

Operating System Concepts 531

Pthread Scheduling API

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)
pthread join(tid[i], NULL) ;
}

/* Each thread will begin control in this
function */

void *runner (void *param)

{
printf ("I am a thread\n”);
pthread exit (0) ;

?*Vw;fﬁf
Operating System Concepts 5.32 Silberschatz, Galvin and Gagne ©2005

Operating System Examples

B Solaris scheduling
B Windows XP scheduling
B Linux scheduling

Operating System Concepts 5,88}

Solaris 2 Scheduling

class-
global scheduling specific scheduler run
priority order priorities classes queue
highest first real time kernel
A \ Q e threads of
real-time
LWPs
Q@
system kernel
o e service
threads
Qr
interactive & kernel
time sharing Q | @@ threadsof
interactive &
time-sharing|
LWPs
Qr
Y J

lowest last

Operating System Concepts 5.34 Silberschatz, Galvin and Gagne 05

Operating System Concepts

Solaris Dispatch Table

time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
5 160 5 =
20 120 10 52
25 120 5 b
30 80 20 B
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
b5 40 45 58
59 20 49 59

BI85

Silberschatz, Galvin and\ Gagne ©‘05

Windows XP Priorities

real-
time

high

above
normal

idle
priority

time-critical

15

highest

6

above normal

normal

below normal

lowest

idle

Operating System Concepts

5.36

Linux Scheduling

B Two algorithms: time-sharing and real-time
B Time-sharing

® Prioritized credit-based — process with most credits is
scheduled next

® Credit subtracted when timer interrupt occurs

® When credit = 0, another process chosen

® When all processes have credit = 0, recrediting occurs
» Based on factors including priority and history

B Real-time

® Soft real-time

® Posix.1b compliant — two classes
» FCFS and RR
» Highest priority process always runs first

s
i} SR
4 - W™

Operating System Concepts 5.37 Silberschatz, Galvin and Gagne ©2005

3 » The Relationship Between Priorities and Time-slice length

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
: tasks
99
100
: other
. tasks
140 lowest 10 ms

Operating System Concepts 5.38

List of Tasks Indexed According to Prorities

active expired
array array
lpriority task lists priority task lists
[0] O0—0O [0]
[1] o—0—0 [1]
[140] O [140]

Operating System Concepts 5.39

Algorithm Evaluation

B Deterministic modeling — takes a particular
predetermined workload and defines the performance of
each algorithm for that workload

B Queueing models
B |mplementation

Rl

Operating System Concepts 5.40 Silberschatz, Galvin and Gagne ©2005

5.15

. . performance
simulation — statistics
H—H for FCFS
FGES
GPLI 10
I i3
actual B0 {8 performance
process i& 112 =—mmp. Simulation =P statistics
execution CkllI 2 for SJF
e 147
el 1 =i
trace tape
performance
simulation —=> statistics
for RR (g = 14
RR (g = 14)
541

Operating System Concepts

Silberschatz, Galvin and\ Gagne 05

End of Chapter 5
QIBBBIIGIIBDIICIIBD DI IIBDIIG

5.08

logical | | logical logical | | logical
a2y CPU GEl ey
physical physical
CPU CPU
system bus

Operating System Concepts 5.43 Silberschatz, Galvin and Gagne 2065

In-5.7

Operating System Concepts 5.44 Silberschatz, Galvin and Gagne ©205

In-5.8

Operating System Concepts 5.45 Silberschatz, Galvin and Gagne 205

In-5.9

Operating System Concepts

Pq P, P Py e P> Pg P
0 10 20 23 30 40 50 52 61
5.46 Silberschatz, Galvin anc? Gagne ©2§

Dispatch Latency

avanl

responss interval

intarrupd
processing

process mads
available

tima

respanse 1o evant

——————— dispatch latancy ———m

— conflicts ——b—— dispatch —m

i

raal-lime
process

eacution
P

Operating System Concepts

5.47

Silberschatz, Galvin ana Gagne ©5

Java Thread Scheduling

B JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

B FIFO Queue is Used if There Are Multiple Threads With the Same
Priority

Operating System Concepts 5.48 Silberschatz, Galvin and Gagne ©2005

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note — the JVM Does Not Specify Whether Threads are Time-Sliced
or Not

fm 2 ; S V‘ ‘ »
Operating System Concepts 5.49 Silberschatz, Galvin and Gagne ©2005

Time-Slicing

Since the JVM Doesn’'t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
Il perform CPU-intensive task

Thread.yield();

This Yields Control to Another Thread of Equal Priority

fm 2 ; S V‘ ‘ »
Operating System Concepts 5.50 Silberschatz, Galvin and Gagne ©2005

Thread Priorities

Priority Comment
Thread.MIN_PRIORITY Minimum Thread Priority

Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

Operating System Concepts 5.51 Silberschatz, Galvin and Gagne ©2005

