

Chapter 2: Operating-System StructuresChapter 2: Operating-System Structures

2.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 2: Operating-System Chapter 2: Operating-System
StructuresStructures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 Operating System Generation

 System Boot

2.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ObjectivesObjectives

 To describe the services an operating system provides to users,
processes, and other systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized
and how they boot

2.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System ServicesOperating System Services

 One set of operating-system services provides functions that are
helpful to the user:
 User interface - Almost all operating systems have a user interface (UI)

 Varies between Command-Line (CLI), Graphics User Interface
(GUI), Batch

 Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

 I/O operations - A running program may require I/O, which may involve
a file or an I/O device.

 File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories, create
and delete them, search them, list file Information, permission
management.

2.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System Services (Cont.)Operating System Services (Cont.)

 One set of operating-system services provides functions that are
helpful to the user (Cont):
 Communications – Processes may exchange information, on the same

computer or between computers over a network

 Communications may be via shared memory or through message
passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user
program

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System Services (Cont.)Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing
 Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them
 Many types of resources - Some (such as CPU cycles,mainmemory,

and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code.

 Accounting - To keep track of which users use how much and what kinds
of computer resources

 Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other
 Protection involves ensuring that all access to system resources is

controlled
 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access attempts
 If a system is to be protected and secure, precautions must be

instituted throughout it. A chain is only as strong as its weakest link.

2.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

User Operating System Interface - CLIUser Operating System Interface - CLI

CLI allows direct command entry

 Sometimes implemented in kernel, sometimes by systems
program

 Sometimes multiple flavors implemented – shells
 Primarily fetches a command from user and executes it

– Sometimes commands built-in, sometimes just names of
programs

» If the latter, adding new features doesn’t require shell
modification

2.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

User Operating System Interface - GUIUser Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available

 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

2.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System CallsSystem Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

 Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

2.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of System CallsExample of System Calls

 System call sequence to copy the contents of one file to another file

2.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Standard APIExample of Standard API

 Consider the ReadFile() function in the
 Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile()
 HANDLE file—the file to be read
 LPVOID buffer—a buffer where the data will be read into and written

from
 DWORD bytesToRead—the number of bytes to be read into the buffer
 LPDWORD bytesRead—the number of bytes read during the last read
 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

2.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System Call ImplementationSystem Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to
these numbers

 The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

 The caller need know nothing about how the system call is
implemented

 Just needs to obey API and understand what OS will do as a
result call

 Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built
into libraries included with compiler)

2.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

API – System Call – OS RelationshipAPI – System Call – OS Relationship

2.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Standard C Library ExampleStandard C Library Example

 C program invoking printf() library call, which calls write() system call

2.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System Call Parameter PassingSystem Call Parameter Passing

 Often, more information is required than simply identity of desired
system call
 Exact type and amount of information vary according to OS and

call
 Three general methods used to pass parameters to the OS

 Simplest: pass the parameters in registers
 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register
 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

 Block and stack methods do not limit the number or length of
parameters being passed

2.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Parameter Passing via TableParameter Passing via Table

2.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Types of System CallsTypes of System Calls

 Process control

 File management

 Device management

 Information maintenance

 Communications

2.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MS-DOS executionMS-DOS execution

(a) At system startup (b) running a program

2.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FreeBSD Running Multiple ProgramsFreeBSD Running Multiple Programs

2.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System ProgramsSystem Programs

 System programs provide a convenient environment for program
development and execution. The can be divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users’ view of the operation system is defined by system
programs, not the actual system calls

2.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris 10 dtrace Following System CallSolaris 10 dtrace Following System Call

2.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System ProgramsSystem Programs

 Provide a convenient environment for program development and execution

 Some of them are simply user interfaces to system calls; others are
considerably more complex

 File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available memory,
disk space, number of users

 Others provide detailed performance, logging, and debugging
information

 Typically, these programs format and print the output to the terminal or
other output devices

 Some systems implement a registry - used to store and retrieve
configuration information

2.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System Programs (cont’d)System Programs (cont’d)

 File modification
 Text editors to create and modify files
 Special commands to search contents of files or perform

transformations of the text
 Programming-language support - Compilers, assemblers,

debuggers and interpreters sometimes provided
 Program loading and execution- Absolute loaders, relocatable

loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

 Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems
 Allow users to send messages to one another’s screens,

browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

2.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System Design and ImplementationOperating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some
approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use,
easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

2.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System Design and Implementation (Cont.)Operating System Design and Implementation (Cont.)

 Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide what
will be done

 The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later

2.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Simple Structure Simple Structure

 MS-DOS – written to provide the most functionality in the least
space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels
of functionality are not well separated

2.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MS-DOS Layer StructureMS-DOS Layer Structure

2.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Layered ApproachLayered Approach

 The operating system is divided into a number of layers (levels),
each built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

2.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Layered Operating SystemLayered Operating System

2.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

UNIXUNIX

 UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

 Systems programs

 The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

2.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

UNIX System StructureUNIX System Structure

2.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Microkernel System Structure Microkernel System Structure

 Moves as much from the kernel into “user” space

 Communication takes place between user modules using message
passing

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space
communication

2.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Mac OS X StructureMac OS X Structure

2.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ModulesModules

 Most modern operating systems implement kernel modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

2.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris Modular ApproachSolaris Modular Approach

2.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual MachinesVirtual Machines

 A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system kernel
as though they were all hardware

 A virtual machine provides an interface identical to the
underlying bare hardware

 The operating system creates the illusion of multiple
processes, each executing on its own processor with its own
(virtual) memory

2.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual Machines (Cont.)Virtual Machines (Cont.)

 The resources of the physical computer are shared to create the
virtual machines

 CPU scheduling can create the appearance that users have
their own processor

 Spooling and a file system can provide virtual card readers and
virtual line printers

 A normal user time-sharing terminal serves as the virtual
machine operator’s console

2.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual Machines (Cont.)Virtual Machines (Cont.)

 (a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

2.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual MachinesVirtual Machines (Cont.) (Cont.)

 The virtual-machine concept provides complete protection of system
resources since each virtual machine is isolated from all other virtual
machines. This isolation, however, permits no direct sharing of
resources.

 A virtual-machine system is a perfect vehicle for operating-systems
research and development. System development is done on the
virtual machine, instead of on a physical machine and so does not
disrupt normal system operation.

 The virtual machine concept is difficult to implement due to the effort
required to provide an exact duplicate to the underlying machine

2.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

VMware ArchitectureVMware Architecture

2.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Java Virtual MachineThe Java Virtual Machine

2.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System GenerationOperating System Generation

 Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

 SYSGEN program obtains information concerning the specific
configuration of the hardware system

 Booting – starting a computer by loading the kernel

 Bootstrap program – code stored in ROM that is able to locate the
kernel, load it into memory, and start its execution

2.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System BootSystem Boot

 Operating system must be made available to hardware so
hardware can start it

 Small piece of code – bootstrap loader, locates the kernel,
loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed
location loads bootstrap loader

 When power initialized on system, execution starts at a fixed
memory location

 Firmware used to hold initial boot code

End of Chapter 2End of Chapter 2

