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Chapter Objectives

B To describe various methods for achieving mutual exclusion in
a distributed system

B To explain how atomic transactions can be implemented in a
distributed system

B To show how some of the concurrency-control schemes
discussed in Chapter 6 can be modified for use in a distributed
environment

B To present schemes for handling deadlock prevention,
deadlock avoidance, and deadlock detection in a distributed
system |
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Event Ordering

B Happened-before relation (denoted by -)

® If A and B are events in the same process, and A was executed
before B, then A - B

® If Ais the event of sending a message by one process and B is
the event of receiving that message by another process, then A
- B

® fA-BandB - Cthen A - C
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Relative Time for Three Concurrent Processes

P Q A
A A A
4
3
2
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Implementation of -

B Associate a timestamp with each system event

® Require that for every pair of events A and B, if A - B, then the
timestamp of A is less than the timestamp of B

B Within each process Pi a logical clock, LCi is associated

® The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a
process

» Logical clock is monotonically increasing

B A process advances its logical clock when it receives a message whose
timestamp is greater than the current value of its logical clock

B |f the timestamps of two events A and B are the same, then the events
are concurrent

® We may use the process identity numbers to break ties and to
create a total ordering
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Distributed Mutual Exclusion (DME)

B Assumptions

® The system consists of n processes; each process P, resides
at a different processor

® Each process has a critical section that requires mutual
exclusion

B Requirement

® If P, is executing in its critical section, then no other process P;
IS executing in its critical section

B \We present two algorithms to ensure the mutual exclusion
execution of processes in their critical sections
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DME: Centralized Approach

B One of the processes in the system is chosen to coordinate the entry
to the critical section

B A process that wants to enter its critical section sends a request
message to the coordinator

B The coordinator decides which process can enter the critical section
next, and its sends that process a reply message

B When the process receives a reply message from the coordinator, it
enters its critical section

B After exiting its critical section, the process sends a release message
to the coordinator and proceeds with its execution

B This scheme requires three messages per critical-section entry:
® request
® reply
® release
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DME: Fully Distributed Approach

B When process P, wants to enter its critical section, it generates a
new timestamp, TS, and sends the message request (P,, TS) to all
other processes in the system

B When process P;receives a request message, it may reply
immediately or it may defer sending a reply back

B When process P, receives a reply message from all other processes
in the system, it can enter its critical section

B After exiting its critical section, the process sends reply messages
to all its deferred requests
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DME: Fully Distributed Approach (Cont.)

B The decision whether process P, replies immediately to a
request(P,, TS) message or defers its reply is based on three

factors:
® If P,is in its critical section, then it defers its reply to P,
o If Pj does not want to enter its critical section, then it sends a
reply immediately to P,

® If P, wants to enter its critical section but has not yet entered it,
then it compares its own request timestamp with the timestamp
TS ,

» If its own request timestamp is greater than TS, then it
sends a reply immediately to P, (P, asked first)

» Otherwise, the reply is deferred
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Desirable Behavior of Fully Distributed Approach

B Freedom from Deadlock is ensured

B Freedom from starvation is ensured, since entry to the critical
section is scheduled according to the timestamp ordering

® The timestamp ordering ensures that processes are served in a
first-come, first served order

B The number of messages per critical-section entry is
2x(n —-1)

This is the minimum number of required messages per critical-
section entry when processes act independently and concurrently
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Three Undesirable Consequences

B The processes need to know the identity of all other processes in
the system, which makes the dynamic addition and removal of
processes more complex

B |f one of the processes fails, then the entire scheme collapses

® This can be dealt with by continuously monitoring the state of
all the processes in the system

B Processes that have not entered their critical section must pause
frequently to assure other processes that they intend to enter the
critical section

® This protocol is therefore suited for small, stable sets of
cooperating processes
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Token-Passing Approach

B Circulate a token among processes in system

® Token is special type of message

® Possession of token entitles holder to enter critical section
B Processes logically organized in a ring structure

B Algorithm similar to Chapter 6 algorithm 1 but token substituted for
shared variable

B Unidirectional ring guarantees freedom from starvation
B Two types of failures

® Lost token — election must be called

® Failed processes — new logical ring established
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Atomicity

B Either all the operations associated with a program unit are
executed to completion, or none are performed

B Ensuring atomicity in a distributed system requires a transaction
coordinator, which is responsible for the following:

® Starting the execution of the transaction

® Breaking the transaction into a number of subtransactions, and
distribution these subtransactions to the appropriate sites for
execution

® Coordinating the termination of the transaction, which may
result in the transaction being committed at all sites or aborted
at all sites
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Two-Phase Commit Protocol (2PC)

B Assumes fail-stop model

B Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached

B When the protocol is initiated, the transaction may still be executing
at some of the local sites

B The protocol involves all the local sites at which the transaction
executed |

B Example: Let T be a transaction initiated at site S, and let the
transaction coordinator at S, be C.
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Phase 1. Obtaining a Decision

B C adds <prepare T> record to the log
B C sends <prepare T> message to all sites

B When a site receives a <prepare T> message, the transaction
manager determines if it can commit the transaction

® If no: add <no T> record to the log and respond to C, with
<abort T>

® If yes:
» add <ready T> record to the log
» force all log records for T onto stable storage
» transaction manager sends <ready T> message to C.
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Phase 1 (Cont.)

B Coordinator collects responses

® All respond “ready”,
decision is commit

® At least one response is “abort”,
decision is abort

® At least one participant fails to respond within time out period,
decision is abort
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Phase 2. Recording Decision in the Database

B Coordinator adds a decision record
<abort T> or <commit T>

to its log and forces record onto stable storage

B Once that record reaches stable storage it is irrevocable (even if
failures occur)

B Coordinator sends a message to each participant informing it of the
decision (commit or abort)

B Participants take appropriate action locally
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Failure Handling in 2PC - Site Failure

B The log contains a <commit T> record

® In this case, the site executes redo(T)
B The log contains an <abort T> record

® In this case, the site executes undo(T)
B The contains a <ready T> record; consult C.

® If C. is down, site sends query-status T message to the other
sites

B The log contains no control records concerning T
® In this case, the site executes undo(T)
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Failure Handling in 2PC — Coordinator C. Failure

B |f an active site contains a <commit T> record in its log, the T must
be committed

B |f an active site contains an <abort T> record in its log, then T must
be aborted

B |f some active site does not contain the record <ready T> in its log
then the failed coordinator C. cannot have decided to

commit T
® Rather than wait for C. to recover, it is preferable to abort T

B All active sites have a <ready T> record in their logs, but no
additional control records

® In this case we must wait for the coordinator to recover
® Blocking problem — T is blocked pending the recovery of site S,
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Concurrency Control

B Modify the centralized concurrency schemes to accommodate the
distribution of transactions

B Transaction manager coordinates execution of transactions (or
subtransactions) that access data at local sites

B | ocal transaction only executes at that site

B Global transaction executes at several sites
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Locking Protocols

B Can use the two-phase locking protocol in a distributed
environment by changing how the lock manager is implemented

B Nonreplicated scheme — each site maintains a local lock manager
which administers lock and unlock requests for those data items
that are stored in that site

® Simple implementation involves two message transfers for
handling lock requests, and one message transfer for handling
unlock requests

® Deadlock handling is more complex
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Single-Coordinator Approach

B A single lock manager resides in a single chosen site, all lock and
unlock requests are made a that site

B Simple implementation

B Simple deadlock handling

B Possibility of bottleneck

B Vulnerable to loss of concurrency controller if single site fails

B Multiple-coordinator approach distributes lock-manager function
over several sites
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Majority Protocol

B Avoids drawbacks of central control by dealing with replicated data
in a decentralized manner

B More complicated to implement

B Deadlock-handling algorithms must be modified; possible for
deadlock to occur in locking only one data item
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Biased Protocol

B Similar to majority protocol, but requests for shared locks prioritized
over requests for exclusive locks

B | ess overhead on read operations than in majority protocol; but has
additional overhead on writes

B | ike majority protocol, deadlock handling is complex
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Primary Copy

B One of the sites at which a replica resides is designated as the
primary site

® Request to lock a data item is made at the primary site of that
data item

B Concurrency control for replicated data handled in a manner similar
to that of unreplicated data

B Simple implementation, but if primary site fails, the data item is
unavailable, even though other sites may have a replica
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Timestamping

B Generate unique timestamps in distributed scheme:
® Each site generates a unique local timestamp

® The global unique timestamp is obtained by concatenation of
the unique local timestamp with the unique site identifier

® Use alogical clock defined within each site to ensure the fair
generation of timestamps

B Timestamp-ordering scheme — combine the centralized
concurrency control timestamp scheme with the 2PC protocol to
obtain a protocol that ensures serializability with no cascading
rollbacks
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Generation of Unique Timestamps

local unique timestamp

/

site identifier

global unique identifier
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Deadlock Prevention

B Resource-ordering deadlock-prevention — define a global ordering
among the system resources

® Assign a unique number to all system resources

® A process may request a resource with unigue number i only if
it is not holding a resource with a unique number grater than |

® Simple to implement; requires little overhead

B Banker’s algorithm — designate one of the processes in the system
as the process that maintains the information necessary to carry
out the Banker’s algorithm

® Also implemented easily, but may require too much overhead
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Timestamped Deadlock-Prevention Scheme

B Each process P, is assigned a unique priority number

B Priority numbers are used to decide whether a process P, should
wait for a process P;; otherwise P; is rolled back

B The scheme prevents deadlocks

® For every edge P, - P, in the wait-for graph, P, has a higher
priority than P,

® Thus a cycle cannot exist
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Wait-Die Scheme

B Based on a nonpreemptive technique

B If P, requests a resource currently held by P;, P; is allowed to wait
only if it has a smaller timestamp than does P, (P; is older than P)

® Otherwise, P; is rolled back (dies)

B Example: Suppose that processes P,, P,, and P, have
timestamps t, 10, and 15 respectively

® if P, request a resource held by P,, then P, will wait

® If P, requests a resource held by P,, then P, will be rolled
back
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Would-Wait Scheme

B Based on a preemptive technique; counterpart to the wait-die
system

B If P, requests a resource currently held by P;, P; is allowed to wait
only if it has a larger timestamp than does P, (P, Is younger than P).
Otherwise P, is rolled back (P, is wounded by P)

B Example: Suppose that processes P,, P, and P, have timestamps
5, 10, and 15 respectively

® If P, requests a resource held by PVZ, then the resource will be
preempted from P, and P, will be rolled back

® If P, requests a resource held by P,, then P, will wait
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site S,
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Global Wait-For Graph
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Deadlock Detection — Centralized Approach

B Each site keeps a local wait-for graph

® The nodes of the graph correspond to all the processes that are
currently either holding or requesting any of the resources local to
that site

B A global wait-for graph is maintained in a single coordination process;
this graph is the union of all local wait-for graphs

B There are three different options (points in time) when the wait-for graph
may be constructed:

1. Whenever a new edge is inserted or removed in one of the local wait-for
graphs

2. Periodically, when a number of changes have occurred in a wait-for graph
3. Whenever the coordinator needs to invoke the cycle-detection algorithm

B  Unnecessary rollbacks may occur as a result of false cycles
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B Append unique identifiers (timestamps) to requests form different
sites

B When process P, at site A, requests a resource from process P,, at
site B, a request message with timestamp TS is sent

B The edge P, —» P, with the label TS is inserted in the local wait-for of

A. The edge is inserted in the local wait-for graph of B only if B has
received the request message and cannot immediately grant the
requested resource |
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The Algorithm

1. The controller sends an initiating message to each site in the
system

2. On receiving this message, a site sends its local wait-for graph to
the coordinator

3. When the controller has received a reply from each site, it
constructs a graph as follows:

(a) The constructed graph contains a vertex for every process in
the system

(b) The graph has an edge Pi - Pj if and only if
(1) there is an edge Pi - Pjin one of the wait-for graphs, or

(2) an edge Pi - Pj with some label TS appears in more
than one wait-for graph

If the constructed graph contains a cycle [1 deadlock
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Local and Global Wait-For Graphs

site S,

site S,

coordinator
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Fully Distributed Approach

B All controllers share equally the responsibility for detecting
deadlock

B Every site constructs a wait-for graph that represents a part of the
total graph

B We add one additional node P_, to each local wait-for graph

B |f a local wait-for graph contains a cycle that does not involve node
P.. then the system is in a deadlock state

B A cycle involving P, implies the possibility of a deadlock

® To ascertain whether a deadlock does exist, a distributed
deadlock-detection algorithm must be invoked
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Augmented Local Wait-For Graphs

N 'l
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Augmented Local Wait-For Graph in Site S2

site S,

N j' < 57
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Election Algorithms

B Determine where a new copy of the coordinator should be restarted

B Assume that a unique priority number is associated with each
active process in the system, and assume that the priority number
of process P, is i

B Assume a one-to-one correspondence between processes and
sites

B The coordinator is always the process with the largest priority
number. When a coordinator fails, the algorithm must elect that
active process with the largest priority number

B Two algorithms, the bully algorithm and a ring algorithm, can be
used to elect a new coordinator in case of failures
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Bully Algorithm

B Applicable to systems where every process can send a message to
every other process in the system

B |f process P, sends a request that is not answered by the

coordinator within a time interval T, assume that the coordinator
has failed; P, tries to elect itself as the new coordinator

B P, sends an election message to every process with a higher

priority number, P, then waits for any of these processes to answer
within T |
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Bully Algorithm (Cont.)

B If no response within T, assume that all processes with numbers
greater than i have failed; P, elects itself the new coordinator

B If answer is received, P, begins time interval T, waiting to receive a

message that a process with a higher priority number has been
elected

B |f no message is sent within T, assume the process with a higher
number has failed; P, should restart the algorithm
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Bully Algorithm (Cont.)

B If P, is not the coordinator, then, at any time during execution, P,
may receive one of the following two messages from process P,

® P, is the new coordinator (j >i). P, in turn, records this
information

® P, started an election (j > i). P, sends a response to P, and

begins its own election algorithm, provided that Pi has not
already initiated such an election

B After a failed process recovers, it immediately begins execution of
the same algorithm

B |f there are no active processes with higher numbers, the recovered
process forces all processes with lower number to let it become the
coordinator process, even if there is a currently active coordinator
with a lower number
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Ring Algorithm

B Applicable to systems organized as a ring (logically or physically)

B Assumes that the links are unidirectional, and that processes send
their messages to their right neighbors

B Each process maintains an active list, consisting of all the priority
numbers of all active processes in the system when the algorithm
ends

B |f process Pi detects a coordinator failure, | creates a new active list
that is initially empty. It then sends a message elect(i) to its right
neighbor, and adds the number i to its active list

PN
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Ring Algorithm (Cont.)

B If P, receives a message elect(j) from the process on the left, it must
respond in one of three ways:

1. If this is the first elect message it has seen or sent, P, creates a new
active list with the numbers i and j

+ It then sends the message elect(i), followed by the message
elect())

2. Ifi #], then the active list for P, now contains the numbers of all the
active processes in the system

+ P, can now determine the largest number in the active list to
identify the new coordinator process

3. Ifi=j, then P, receives the message elect(i)

+ The active list for P, contains all the active processes in the
system

P. can now determine the new coordinator process.
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Reaching Agreement

B There are applications where a set of processes wish to agree on a
common “value”

B Such agreement may not take place due to:
® Faulty communication medium
® Faulty processes

» Processes may send garbled or incorrect messages to other
processes

» A subset of the processes may collaborate with each other
in an attempt to defeat the scheme

— :,* ‘
Operating System Concepts 18.48 Silberschatz, Galvin and Gagne ©2005



Faulty Communications

B Process P, at site A, has sent a message to process P, at site B; to
proceed, P, needs to know Iif P, has received the message

B Detect failures using a time-out scheme

® When P, sends out a message, it also specifies a time interval

during which it is willing to wait for an acknowledgment
message form P,

® When P, receives the message, it immediately sends an
acknowledgment to P.

® If P, receives the acknowledgment message within the specified
time interval, it concludes that P, has received its message

» If a time-out occurs, P, needs to retransmit its message and
wait for an acknowledgment

® Continue until P, either receives an acknowledgment, or is
notified by the system that B is down
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Faulty Communications (Cont.)

B Suppose that P, also needs to know that P, has received its
acknowledgment message, in order to decide on how to proceed

® In the presence of failure, it is not possible to accomplish this
task

® |[tis not possible in a distributed environment for processes P,
and P, to agree completely on their respective states
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Faulty Processes (Byzantine Generals Problem)

B Communication medium is reliable, but processes can fail in
unpredictable ways

B Consider a system of n processes, of which no more than m are
faulty

® Suppose that each process P, has some private value of V.

B Devise an algorithm that allows each nonfaulty P, to construct a
vector X, = (A, A, ..., A,,) such that::

® If P, is a nonfaulty process, then A;=V,
® If P, and P, are both nonfaulty processes, then X, = Xi.

B Solutions share the following properties
® A correct algorithm can be devised only ifn=3xm+ 1

® The worst-case delay for reaching agreement is
proportionate to m + 1 message-passing delays
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Faulty Processes (Cont.)

B An algorithm for the case where m = 1 and n = 4 requires two rounds
of information exchange:
® Each process sends its private value to the other 3 processes

® Each process sends the information it has obtained in the first
round to all other processes

B |f a faulty process refuses to send messages, a honfaulty process can
choose an arbitrary value and pretend that that value was sent by that

process

B After the two rounds are completed, a nonfaulty process Pi can
construct its vector Xi = (Ai,1, Ai,2, Ai,3, Ai,4) as follows:

® A=V,
® Forj Zi, if at least two of the three values reported for process P,
agree, then the majority value is used to set the value of A,

» Otherwise, a default value (nil) is used
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End of Chapter 18
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