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Process Concept

B An operating system executes a variety of programs:
® Batch system — jobs
® Time-shared systems — user programs or tasks

B Textbook uses the terms job and process almost
interchangeably

B Process — a program in execution; process execution must
progress in sequential fashion

B A process includes:
® program counter
® stack
® data section

R
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Process in Memory
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Process State

B As a process executes, it changes state
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new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a process
terminated: The process has finished execution




Diagram of Process State
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Process Control Block (PCB)

Information associated with each process
B Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

I/O status information
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Process Control Block (PCB)
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CPU Switch From Process to Process
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Process Scheduling Queues

B Job queue — set of all processes in the system

B Ready queue — set of all processes residing in main memory,
ready and waiting to execute

B Device queues — set of processes waiting for an 1/0O device
B Processes migrate among the various queues
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Representation of Process Scheduling
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Schedulers

B | ong-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

B Short-term scheduler (or CPU scheduler) — selects
which process should be executed next and allocates
CPU

'a'\ ) " < s

Operating System Concepts 3.13 Silberschatz, Galvin and Gagne ©2005



Addition of Medium Term Scheduling
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Schedulers (Cont.)

B Short-term scheduler is invoked very frequently (milliseconds) [
(must be fast)

B | ong-term scheduler is invoked very infrequently (seconds,
minutes) O (may be slow)

B The long-term scheduler controls the degree of multiprogramming
B Processes can be described as either:

® |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

® CPU-bound process — spends more time doing computations;
few very long CPU bursts
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Context Switch

B When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new
process

B Context-switch time is overhead; the system does no useful work
while switching

B Time dependent on hardware support

R b
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Process Creation

B Parent process create children processes, which, in turn create
other processes, forming a tree of processes

B Resource sharing
® Parent and children share all resources
® Children share subset of parent’s resources
® Parent and child share no resources
B Execution
® Parent and children execute concurrently
® Parent waits until children terminate
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Process Creation (Cont.)

B Address space
® Child duplicate of parent
® Child has a program loaded into it
B UNIX examples
® fork system call creates new process

® exec system call used after a fork to replace the process’
memory space with a new program
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Process Creation

resumes
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C Program Forking Separate Process

int main ()
{
Pid t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */
execlp("/bin/1ls", "ls'", NULL) ;

} ,
else { /* parent process */

/* parent will wait for the child to
complete */

wait (NULL) ;
printf ("Child Complete") ;
exit (0) ;
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telnetdaemon
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Csh
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Process Termination

B Process executes last statement and asks the operating system to
delete it (exit)

® OQutput data from child to parent (via wait)

® Process’ resources are deallocated by operating system
B Parent may terminate execution of children processes (abort)

® Child has exceeded allocated resources

® Task assigned to child is no longer required

® |If parent is exiting

» Some operating system do not allow child to continue if its
parent terminates

All children terminated - cascading termination
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Cooperating Processes

B |ndependent process cannot affect or be affected by the execution
of another process

B Cooperating process can affect or be affected by the execution of
another process

B Advantages of process cooperation
® Information sharing
® Computation speed-up
® Modularity
® Convenience
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Producer-Consumer Problem

B Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

® unbounded-buffer places no practical limit on the size of
the buffer

® bounded-buffer assumes that there is a fixed buffer size
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Bounded-Buffer — Shared-Memory Solution

B Shared data
#define BUFFER_SIZE 10
Typedef struct {

} item;

item buffer[BUFFER_SIZE];
intin = O;
int out = O;

B Solution is correct, but can only use BUFFER_SIZE-1 elements

" et
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Bounded-Buffer — Insert() Method

while (true) {
/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE

count) == out)
; /* do nothing -- no free buffers */
buffer[in] = item;

in = (in + 1) % BUFFER SIZE;
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Bounded Buffer — Remove() Method

while (true) {
while (in == out)

; // do nothing -- nothing
to consume

// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;

return item;

{
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Interprocess Communication (IPC)

B Mechanism for processes to communicate and to synchronize their
actions

B Message system — processes communicate with each other without
resorting to shared variables

B |PC facility provides two operations:
® send(message) — message size fixed or variable
® receive(message)
B |f P and Q wish to communicate, they need to:
® establish a communication link between them
® exchange messages via send/receive
B Implementation of communication link
® physical (e.g., shared memory, hardware bus)
® Jogical (e.g., logical properties)
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Implementation Questions

B How are links established?
B Can alink be associated with more than two processes?

B How many links can there be between every pair of communicating
processes?

B \What is the capacity of a link?

B |s the size of a message that the link can accommodate fixed or
variable?

B |s a link unidirectional or bi-directional?
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Communications Models
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Direct Communication

B Processes must name each other explicitly:

® send (P, message) — send a message to process P

® receive(Q, message) — receive a message from process Q
B Properties of communication link

® Links are established automatically

® Alink is associated with exactly one pair of communicating
processes

® Between each pair there exists exactly one link
® The link may be unidirectional, but is usually bi-directional
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Indirect Communication

B Messages are directed and received from mailboxes (also
referred to as ports)

® Each mailbox has a unique id
® Processes can communicate only if they share a mailbox
B Properties of communication link
® Link established only if processes share a common mailbox
® A link may be associated with many processes

® Each pair of processes may share several communication
links |

® Link may be unidirectional or bi-directional

7~
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Indirect Communication

B Operations
® create a new mailbox
® send and receive messages through mailbox
® destroy a mailbox
B Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A
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Indirect Communication

B Mailbox sharing
® P, P,, and P, share mailbox A
® P, sends; P, and P, receive
® Who gets the message”?
B Solutions
® Allow a link to be associated with at most two processes
® Allow only one process at a time to execute a receive operation

® Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.
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Synchronization

B Message passing may be either blocking or non-blocking
B Blocking is considered synchronous

® Blocking send has the sender block until the message is
received

® Blocking receive has the receiver block until a message is
available

B Non-blocking is considered asynchronous

® Non-blocking send has the sender send the message and
continue

® Non-blocking receive has the receiver receive a valid
message or null
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Buffering

B Queue of messages attached to the link; implemented in one of
three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

— :,* ‘ .‘
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Client-Server Communication

B Sockets
B Remote Procedure Calls
B Remote Method Invocation (Java)
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Sockets

B A socket is defined as an endpoint for communication
B Concatenation of IP address and port

B The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

B Communication consists between a pair of sockets
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Socket Communication

host X
(146.86.5.20)

socket

(4686 & Ale 25
web server

(161.25.19.8)

socket
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Remote Procedure Calls

B Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems.

B Stubs - client-side proxy for the actual procedure on the server.

B The client-side stub locates the server and marshalls the
parameters.

B The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the server.
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Execution of RPC
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Remote Method Invocation

Remote Method Invocation (RMI) is a Java mechanism similar to
RPCs.

B RMI allows a Java program on one machine to invoke a method on
a remote object.

Java @-
program

~®  remote
object
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Marshalling Parameters

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

P

skeleton
F 3

A, B, someMethod

boolean return value
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End of Chapter 3
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