

Chapter 5: CPU SchedulingChapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 5: CPU SchedulingChapter 5: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Multiple-Processor Scheduling

 Real-Time Scheduling

 Thread Scheduling

 Operating Systems Examples

 Java Thread Scheduling

 Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic ConceptsBasic Concepts

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of
CPU execution and I/O wait

 CPU burst distribution

5.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Alternating Sequence of CPU And I/O BurstsAlternating Sequence of CPU And I/O Bursts

5.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Histogram of CPU-burst TimesHistogram of CPU-burst Times

5.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

CPU SchedulerCPU Scheduler

 Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

5.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DispatcherDispatcher

 Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart
that program

 Dispatch latency – time it takes for the dispatcher to stop one
process and start another running

5.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Scheduling CriteriaScheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution
per time unit

 Turnaround time – amount of time to execute a particular
process

 Waiting time – amount of time a process has been waiting
in the ready queue

 Response time – amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)

5.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Optimization CriteriaOptimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

5.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

First-Come, First-Served (FCFS) SchedulingFirst-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

5.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FCFS Scheduling (Cont.)FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect short process behind long process

P1P3P2

63 300

5.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shortest-Job-First (SJR) SchedulingShortest-Job-First (SJR) Scheduling

 Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time

 Two schemes:

 nonpreemptive – once CPU given to the process it cannot be
preempted until completes its CPU burst

 preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

 SJF is optimal – gives minimum average waiting time for a given
set of processes

5.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJFExample of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

5.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Preemptive SJFExample of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (preemptive)

 Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

5.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Determining Length of Next CPU BurstDetermining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using
exponential averaging

1. tn=actual lenght of nth CPU burst
2. τ n1= predicted value for the next CPU burst
3 . α , 0≤α≤1
4 . Define: τ n=1=α tn 1−α  τ n .

5.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Prediction of the Length of the Next CPU BurstPrediction of the Length of the Next CPU Burst

5.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Examples of Exponential AveragingExamples of Exponential Averaging

 α =0
 τn+1 = τn

 Recent history does not count
 α =1

 τn+1 = α tn

 Only the actual last CPU burst counts
 If we expand the formula, we get:

τn+1 = α tn+(1 - α)α tn -1 + …

 +(1 - α)j α tn -j + …

 +(1 - α)n +1 τ0

 Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor

5.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Priority SchedulingPriority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU
burst time

 Problem ≡ Starvation – low priority processes may never execute

 Solution ≡ Aging – as time progresses increase the priority of the
process

5.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Round Robin (RR)Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

 Performance

 q large ⇒ FIFO

 q small ⇒ q must be large with respect to context switch,
otherwise overhead is too high

5.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of RR with Time Quantum = 20Example of RR with Time Quantum = 20

Process Burst Time

P1 53

 P2 17

 P3 68

 P4 24

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

5.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Time Quantum and Context Switch TimeTime Quantum and Context Switch Time

5.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Turnaround Time Varies With The Time QuantumTurnaround Time Varies With The Time Quantum

5.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel QueueMultilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

 20% to background in FCFS

5.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Queue SchedulingMultilevel Queue Scheduling

5.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Feedback QueueMultilevel Feedback Queue

 A process can move between the various queues; aging can be
implemented this way

 Multilevel-feedback-queue scheduler defined by the following
parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter
when that process needs service

5.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Multilevel Feedback QueueExample of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

5.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Feedback QueuesMultilevel Feedback Queues

5.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multiple-Processor SchedulingMultiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are
available

 Homogeneous processors within a multiprocessor

 Load sharing

 Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing

5.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Real-Time SchedulingReal-Time Scheduling

 Hard real-time systems – required to complete a
critical task within a guaranteed amount of time

 Soft real-time computing – requires that critical
processes receive priority over less fortunate ones

5.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread SchedulingThread Scheduling

 Local Scheduling – How the threads library decides which
thread to put onto an available LWP

 Global Scheduling – How the kernel decides which kernel
thread to run next

5.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pthread Scheduling APIPthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{

 int i;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

5.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pthread Scheduling APIPthread Scheduling API

/* now join on each thread */

for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);

}

 /* Each thread will begin control in this
function */

void *runner(void *param)

{

printf("I am a thread\n");

pthread exit(0);

}

5.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System ExamplesOperating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

5.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris 2 SchedulingSolaris 2 Scheduling

5.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris Dispatch Table Solaris Dispatch Table

5.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XP PrioritiesWindows XP Priorities

5.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linux SchedulingLinux Scheduling

 Two algorithms: time-sharing and real-time
 Time-sharing

 Prioritized credit-based – process with most credits is
scheduled next

 Credit subtracted when timer interrupt occurs
 When credit = 0, another process chosen
 When all processes have credit = 0, recrediting occurs

 Based on factors including priority and history
 Real-time

 Soft real-time
 Posix.1b compliant – two classes

 FCFS and RR
 Highest priority process always runs first

5.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Relationship Between Priorities and Time-slice lengthThe Relationship Between Priorities and Time-slice length

5.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

List of Tasks Indexed According to ProritiesList of Tasks Indexed According to Prorities

5.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Algorithm EvaluationAlgorithm Evaluation

 Deterministic modeling – takes a particular
predetermined workload and defines the performance of
each algorithm for that workload

 Queueing models

 Implementation

5.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

5.155.15

End of Chapter 5End of Chapter 5

5.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

5.085.08

5.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

In-5.7In-5.7

5.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

In-5.8In-5.8

5.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

In-5.9In-5.9

5.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dispatch LatencyDispatch Latency

5.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Java Thread SchedulingJava Thread Scheduling

 JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

 FIFO Queue is Used if There Are Multiple Threads With the Same
Priority

5.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Java Thread Scheduling (cont)Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State

2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced
or Not

5.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Time-SlicingTime-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method

May Be Used:

while (true) {

// perform CPU-intensive task

. . .

Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

5.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread PrioritiesThread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority

Thread.MAX_PRIORITY Maximum Thread Priority

Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:

setPriority(Thread.NORM_PRIORITY + 2);

