Chapter 7: Deadlocks
QIBBBIIGIIBDIICIIBD DI IIBDIIG




Chapter 7: Deadlocks

The Deadlock Problem

System Model

Deadlock Characterization
Methods for Handling Deadlocks
Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

Operating System Concepts 7.2



Chapter Objectives

B To develop a description of deadlocks, which prevent
sets of concurrent processes from completing their tasks

B To present a number of different methods for preventing
or avoiding deadlocks in a computer system.

fm 2 ; S V‘ ‘ »
Operating System Concepts 7.3 Silberschatz, Galvin and Gagne ©2005



The Deadlock Problem

B A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set.

B Example
® System has 2 tape drives.

® P, and P, each hold one tape drive and each needs another
one.

B Example

® semaphores A and B, initialized to 1

P, P,
wait (A); wait(B)
walit (B); wait(A)
Vi, =+ et
Operating System Concepts 7.4 Silberschatz, Galvin and Gagne ©2005



B Traffic only in one direction.

Each section of a bridge can be viewed as a resource.

B |f a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

B Several cars may have to be backed up if a deadlock
occurs.

B Starvation is possible.

R b
Operating System Concepts 75 Silberschatz, Galvin and Gagne ©2005



System Model

B Resourcetypes R, R,,..., R

m

CPU cycles, memory space, I/O devices
B Each resource type R. has W, instances.

B Each process utilizes a resource as follows:
® request
® use
® release

Operating System Concepts 7.6 Silberschatz, Galvin and Gagne ©2005



Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

B Mutual exclusion: only one process at a time can use a
resource.

B Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.

B No preemption: aresource can be released only
voluntarily by the process holding it, after that process has
completed its task.

B Circular wait: there exists a set {P,, P,, ..., P} of waiting
processes such that P, is waiting for a resource that is held
by P,, P, is waiting for a resource that is held by

P,, ..., P, Is waiting for a resource that is held by
P., and P, is waiting for a resource that is held by P,

/‘*»3 %
Operating System Concepts 7.7 Silberschatz, Galvin and Gagne ©2005



Resource-Allocation Graph

A set of vertices V and a set of edges E.

B V is partitioned into two types:

® P={P,, P, ..., P} the set consisting of all the
processes in the system.

® R={R, R,, ..., R}, the set consisting of all resource
types in the system.

B request edge — directed edge P, - R,

B assignment edge — directed edge R, - P,

Operating System Concepts 7.8 Silberschatz, Galvin and Gagne ©2005



Resource-Allocation Graph (Cont.)

B Process

O

B Resource Type with 4 instances

oo
oo

B P, requests instance of R

B P, is holding an instance of R,

Operating System Concepts 7.9 Silberschatz, Galvin and Gagne ©2005

oo
oo

oh
oo




Example of a Resource Allocation Graph

0 o
a

R, o
R,

Operating System Concepts 7.10 Silberschatz, Galvin and Gagne 2005



e @
®

R, S
R,

Operating System Concepts 711 Silberschatz, Galvin and Gagne 205



Resource Allocation Graph With A Cycle But No Deadlock

P
R, ;
o«
® -

P
R,

N\

@
."""--.

Operating System Concepts 7.12



Basic Facts

B |f graph contains no cycles [0 no deadlock.

B |f graph contains a cycle [
® if only one instance per resource type, then deadlock.

® if several instances per resource type, possibility of
deadlock.

Operating System Concepts 7.13



Methods for Handling Deadlocks

B Ensure that the system will never enter a deadlock state.

B Allow the system to enter a deadlock state and then
recover.

B |gnore the problem and pretend that deadlocks never occur
in the system; used by most operating systems, including
UNIX.

Operating System Concepts 7.14



Deadlock Prevention

Restrain the ways request can be made.

B Mutual Exclusion — not required for sharable resources;
must hold for nonsharable resources.

B Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources.

® Require process to request and be allocated all its
resources before it begins execution, or allow process
to request resources only when the process has none.

® Low resource utilization; starvation possible.

Operating System Concepts 7.15




Deadlock Prevention (Cont.)

® No Preemption —

® |f a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released.

® Preempted resources are added to the list of resources for
which the process is waiting.

® Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

B Circular Wait — impose a total ordering of all resource types,
and require that each process requests resources in an
Increasing order of enumeration.

Operating System Concepts 7.16




Deadlock Avoidance

Requires that the system has some additional a priori information
available.

B Simplest and most useful model requires that each process
declare the maximum number of resources of each type
that it may need.

B The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can never
be a circular-wait condition.

B Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Y »=
Operating System Concepts 7.17 Silberschatz, Galvin and Gagne ©2005



Safe State

B \When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

B System is in safe state if there exists a safe sequence of all
processes.

B Sequence <P, P,, ..., P> is safe if for each P,, the resources that
P.can still request can be satisfied by currently available resources
+ resources held by all the P;, with j<lI.

® If P, resource needs are not immediately available, then P, can
wait until all P, have finished.

® When P, is finished, P, can obtain needed resources, execute,
return allocated resources, and terminate.

® When P, terminates, P, can obtain its needed resources, and
So on.

Operating System Concepts 7.18 Silberschatz, Galvin and Gagne ©2005



Basic Facts

B |f a system is in safe state [0 no deadlocks.
B |f a system is in unsafe state 0 possibility of deadlock.

B Avoidance O ensure that a system will never enter an
unsafe state.

s o

Operating System Concepts 7.19 Silberschatz, Galvin and Gagne ©2005



Safe, Unsafe , Deadlock State

unsafe
deadlock

safe

Operating System Concepts 7.20



Resource-Allocation Graph Algorithm

B Claim edge P, - R;indicated that process P, may request
resource R;; represented by a dashed line.

B Claim edge converts to request edge when a process
requests a resource.

B When aresource is released by a process, assignment edge
reconverts to a claim edge.

B Resources must be claimed a priori in the system.

Operating System Concepts 7.21 Silberschatz, Galvin and Gagne ©2005



Resource-Allocation Graph For Deadlock Avoidance

Operating System Concepts 7.22



Unsafe State In Resource-Allocation Graph

Operating System Concepts 7.23



Banker's Algorithm

B Multiple instances.
B Each process must a priori claim maximum use.
B \When a process requests a resource it may have to wait.

B When a process gets all its resources it must return them in
a finite amount of time.

Operating System Concepts 7.24



Data Structures for the Banker’'s Algorithm

Let n = number of processes, and m = number of resources types.

B Available: Vector of length m. If available [j] = k, there are k
instances of resource type R, available.

B Max: n x m matrix. If Max [i,j] = k, then process P, may
request at most k instances of resource type R.

B Allocation: n x m matrix. If Allocation[i,j] = k then P, is
currently allocated k instances of R;

B Need: nxm matrix. If Need[i,j] = k, then P, may need k
more instances of R;to complete its task.

Need [i,j] = Max([i,j] — Allocation [i,j].

Ve v "
Operating System Concepts 7.25 Silberschatz, Galvin and Gagne ©2005



Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Avalilable
Finish [i] = false fori-1,3, ..., n.
2. Find and i such that both:
(a) Finish [i] = false
(b) Need, < Work
If no such 1 exists, go to step 4.

3. Work = Work + Allocation.
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe
state.

v v‘;”\ "':47 ’ b-‘
Operating System Concepts 7.26 Silberschatz, Galvin and Gagne ©2005



Resource-Request Algorithm for Process P,

Request = request vector for process P.. If Request. [j] = k then
process P, wants k instances of resource type R;

1. If Request, < Need, go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Request, < Available, go to step 3. Otherwise P. must
wait, since resources are not available.

3. Pretend to allocate requested resources to P, by modifying
the state as follows:

Available = Available = Request;
Allocation, = Allocation, + Request;
Need, = Need, — Request;

® |f safe [J the resources are allocated to Pi.

® |f unsafe /7 Pi must wait, and the old resource-allocation
state is restored

ol 40D
ﬁ/";\ :’ - Sl

Operating System Concepts 7.27 Silberschatz, Galvin and Gagne ©2005



Example of Banker's Algorithm

B 5 processes P,through P,; 3 resource types A

(10 instances),
B (5instances, and C (7 instances).

B Snapshot at time T,:

Allocation Max Available
ABC ABC ABC
P, 010 753 332
P, 200 322
P, 302 902
P, 211 222
P 002 433

N

Operating System Concepts 7.28 Silberschatz, Galvin and Gagne ©2005



Example (Cont.)

B The content of the matrix. Need is defined to be Max — Allocation.

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

B The system is in a safe state since the sequence < P, P,, P,, P,,
P,> satisfies safety criteria.

Operating System Concepts 7.29



Example P, Request (1,0,2) (Cont.)

B Check that Request < Available (that is, (1,0,2) < (3,3,2) O true.

Allocation Need Available
ABC ABC ABC
P, 010 743 230
P, 302 020
P, 301 600
P, 211 011
P, 002 431

B Executing safety algorithm shows that sequence <P1, P3, P4, PO,
P2> satisfies safety requirement.

B Can request for (3,3,0) by P4 be granted?
B Can request for (0,2,0) by PO be granted?

R b
Operating System Concepts 7.30 Silberschatz, Galvin and Gagne ©2005



Deadlock Detection

B Allow system to enter deadlock state
B Detection algorithm

B Recovery scheme

Operating System Concepts 7.31 STl G e Csaie O2i5E



SlNgie InStance or eacn resource
Type

B Maintain wait-for graph
® Nodes are processes.
® P, - P,if P;is waliting for P,

B Periodically invoke an algorithm that searches for a cycle in
the graph.

B An algorithm to detect a cycle in a graph requires an order
of n? operations, where n is the number of vertices in the

graph.

3Ny
o N ;' -4 ,

Operating System Concepts 7.32 Silberschatz, Galvin and Gagne ©2005



Resource-Allocation Graph and Wait-for Graph

F 3

AN
@:

(@) (b)

Resource-Allocation Graph Corresponding wait-for graph

Operating System Concepts 7.33 Silberschatz, Galvin and Gagne 2005



Several Instances of a Resource Type

B Available: A vector of length m indicates the number of
available resources of each type.

B Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each process.

B Request: An n x m matrix indicates the current request of
each process. If Request [i] = k, then process P, is

requesting k more instances of resource type. R.

R b
Operating System Concepts 7.34 Silberschatz, Galvin and Gagne ©2005



Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:

(a) Work = Available

(b) Fori=1,2, ..., n, if Allocation, # O, then
Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false
(b) Request. < Work

If no such i exists, go to step 4.

R b
Operating System Concepts 7.35 Silberschatz, Galvin and Gagne ©2005



Detection Algorithm (Cont.)

3. Work = Work + Allocation,
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 <i < n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then P, is
deadlocked.

Algorithm requires an order of O(m x n? operations to detect whether the
system is in deadlocked state.

D) ? 1,‘,,, % 4
Operating System Concepts 7.36 Silberschatz, Galvin and Gagne ©2005



Example of Detection Algorithm

B Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances).

B Snapshot at time T,:
Allocation Reguest Available

ABC ABC ABC
P, 010 000 000
P, 200 202
P, 303 000
P, 211 100
P, 002 002

B Sequence <P, P,, P,, P,, P,> will result in Finish[i] = true for all i.

Operating System Concepts 7.37 Silberschatz, Galvin and Gagne ©2005



Example (Cont.)

B P, requests an additional instance of type C.

Request
ABC

., 000
. 201
001
100
, 002

P
P

N

w

P
P
P

B State of system?

® Can reclaim resources held by process P,, but insufficient
resources to fulfill other processes; requests.

® Deadlock exists, consisting of processes P,, P,, P,, and P,.

R b
Operating System Concepts 7.38 Silberschatz, Galvin and Gagne ©2005



Detection-Algorithm Usage

B When, and how often, to invoke depends on:
® How often a deadlock is likely to occur?
® How many processes will need to be rolled back?
» one for each disjoint cycle

B |f detection algorithm is invoked arbitrarily, there may be many
cycles in the resource graph and so we would not be able to tell
which of the many deadlocked processes “caused” the deadlock.

— :,* ‘ .‘
Operating System Concepts 7.39 Silberschatz, Galvin and Gagne ©2005



Recovery from Deadlock: Process Termination

B Abort all deadlocked processes.
B Abort one process at a time until the deadlock cycle is eliminated.

B |n which order should we choose to abort?
® Priority of the process.

® How long process has computed, and how much longer to
completion.

Resources the process has used.
Resources process needs to complete.
How many processes will need to be terminated.

Is process interactive or batch?

R b
Operating System Concepts 7.40 Silberschatz, Galvin and Gagne ©2005



Recovery from Deadlock: Resource Preemption

B Selecting a victim — minimize cost.
B Rollback — return to some safe state, restart process for that state.

B Starvation — same process may always be picked as victim,
include number of rollback in cost factor.

Operating System Concepts 7.41



End of Chapter 7
QIBBBIIGIIBDIICIIBD DI IIBDIIG




