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Basic Concepts

B Maximum CPU utilization obtained with multiprogramming

B CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and 1/0 wait

B CPU burst distribution
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Operating System Concepts
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Histogram of CPU-burst Times
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CPU Scheduler

B Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

B CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
B Scheduling under 1 and 4 is nonpreemptive
B All other scheduling is preemptive |
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Dispatcher

B Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

® switching context
® switching to user mode

® jumping to the proper location in the user program to restart
that program

B Dispatch latency — time it takes for the dispatcher to stop one
process and start another running
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Scheduling Criteria

B CPU utilization — keep the CPU as busy as possible

B Throughput — # of processes that complete their execution
per time unit

B Turnaround time — amount of time to execute a particular
process

B Waiting time — amount of time a process has been waiting
in the ready queue

B Response time — amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)
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Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

B Waiting time for P, =0; P, =24, P,= 27
B Average waiting time: (0 + 24 + 27)/3 = 17
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
PZ ’ P3 ! Pl
B The Gantt chart for the schedule is:

P, P, P,

0 3 6 30
Waiting time for P, =6;P,=0.P,= 3

i
B Average waiting time: (6 +0+ 3)/3=3
B Much better than previous case

N

Convoy effect short process behind long process
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Shortest-Job-First (SJR) Scheduling

B Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time

B Two schemes:

® nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst

® preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

B SJF is optimal — gives minimum average waiting time for a given
set of processes
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Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
B SJF (non-preemptive)
P, P, P, P,
I I I I I I I I I I I I
T T T T T
0 3 7 8 12 16

M Average waitingtime=(0+6 +3+7)/4 =4
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Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
B SJF (preemptive)
P, P, | P, P, P, P,
I I I I I I I I I
| | | T I
0 2 A 5 7 11 16

B Average waitingtime=(9+1+0+2)/4=3
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Determining Length of Next CPU Burst

B Can only estimate the length

B Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t =actual lenght o n" CPU burst

2. 7, ,= predicted value for the next CPU burst
3. a,0<a<l

4. Define 7, ,=at,+(1-alz,.

n
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Prediction of the Length of the Next CPU Burst

12
T, 10

8 =
t 6

_/
4 b
2 L.
l | | I I | | |
time ———

CPU burst (t) 6 4 6 4 13 13 13
"guess" (t) 10 8 6 6 5 9 11 12
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Examples of Exponential Averaging

B o=0
® T = Ty
® Recent history does not count
B o=l
® T =0 tn
® Only the actual last CPU burst counts
B |f we expand the formula, we get:
T.,=at+1l-o)at -1+ ...
+l-a)at, ;+ ..
+(1 - )n " T

B Since both a and (1 - a) are less than or equal to 1, each
successive term has less weight than its predecessor
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Priority Scheduling

B A priority number (integer) is associated with each process

B The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

® Preemptive
® nonpreemptive

B SJF is a priority scheduling where priority is the predicted next CPU
burst time

B Problem = Starvation — low priority processes may never execute

B Solution = Aging — as time progresses increase the priority of the
process

Ve v "
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Round Robin (RR)

B Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

B |[f there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more

than (n-1)q time units.
B Performance
® qglarge O FIFO

® gsmall O g must be large with respect to context switch,
otherwise overhead is too high
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Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P, 24

B The Gantt chart is:

PP, |P,|P, | P |P,|P, | P, |P,|P,

O 20 37 57 77 97 117 121 134 154 162

B Typically, higher average turnaround than SJF, but better response
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Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9
o 1 2 3 4 5 6 7 8 9 10
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Multilevel Queue

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

B Each queue has its own scheduling algorithm
® foreground — RR
® background — FCFS

B Scheduling must be done between the queues

® Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

® Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

® 20% to background in FCFS

Ve v
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Multilevel Queue Scheduling

highest priority
> interactive processes E—
— interactive editing processes m—
> batch processes m—
student processes m—
lowest priority
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Multilevel Feedback Queue

B A process can move between the various queues; aging can be
Implemented this way

B Multilevel-feedback-queue scheduler defined by the following
parameters:

® number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service

V = ":7 . o
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Example of Multilevel Feedback Queue

B Three queues:
® Q,— RR with time quantum 8 milliseconds
® Q, - RRtime quantum 16 milliseconds
® Q,-FCFS

B Scheduling

® A new job enters queue Q, which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q,.

® At Q, job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted and
moved to queue Q,.
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Multilevel Feedback Queues

>
quantum = 8
' >
quantum = 16
r
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Multiple-Processor Scheduling

B CPU scheduling more complex when multiple CPUs are
available

B Homogeneous processors within a multiprocessor

Load sharing

B Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

fm 2 ; S V‘ ‘ »
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Real-Time Scheduling

B Hard real-time systems — required to complete a
critical task within a guaranteed amount of time

B Soft real-time computing — requires that critical
processes receive priority over less fortunate ones

Operating System Concepts 5.29



Thread Scheduling

B | ocal Scheduling — How the threads library decides which
thread to put onto an available LWP

B Global Scheduling — How the kernel decides which kernel
thread to run next
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Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv([])
{
int 1i;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM) ;
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy (&attr, SCHED OTHER) ;
/* create the threads */
for (i = 0; i < NUM THREADS; i++)
pthread create(&tid[i], &attr,runner,NULL) ;
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Pthread Scheduling API

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)
pthread join(tid[i], NULL) ;
}

/* Each thread will begin control in this
function */

void *runner (void *param)

{
printf ("I am a thread\n”);
pthread exit (0) ;

?*Vw;fﬁf
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Operating System Examples

B Solaris scheduling
B Windows XP scheduling
B Linux scheduling

Operating System Concepts 5,88}



Solaris 2 Scheduling

class-
global scheduling specific scheduler run
priority order priorities classes queue
highest first real time kernel
A \ Q e threads of
real-time
LWPs
Q@
system kernel
o e  service
threads
Qr
interactive & kernel
time sharing Q | @@ threadsof
interactive &
time-sharing|
LWPs
Qr
Y J

lowest last
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Operating System Concepts

Solaris Dispatch Table

time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
5 160 5 =
20 120 10 52
25 120 5 b
30 80 20 B
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
b5 40 45 58
59 20 49 59

BI85
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Windows XP Priorities

real-
time

high

above
normal

idle
priority

time-critical

15

highest

6

above normal

normal

below normal

lowest

idle
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Linux Scheduling

B Two algorithms: time-sharing and real-time
B Time-sharing

® Prioritized credit-based — process with most credits is
scheduled next

® Credit subtracted when timer interrupt occurs

® When credit = 0, another process chosen

® When all processes have credit = 0, recrediting occurs
» Based on factors including priority and history

B Real-time

® Soft real-time

® Posix.1b compliant — two classes
» FCFS and RR
» Highest priority process always runs first

s
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3 » The Relationship Between Priorities and Time-slice length

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
: tasks
99
100
: other
. tasks
140 lowest 10 ms
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List of Tasks Indexed According to Prorities

active expired
array array
lpriority task lists priority task lists
[0] O0—0O [0]
[1] o—0—0 [1]
[140] O [140]
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Algorithm Evaluation

B Deterministic modeling — takes a particular
predetermined workload and defines the performance of
each algorithm for that workload

B Queueing models
B |mplementation

Rl
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5.15

. . performance
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End of Chapter 5
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Dispatch Latency
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Java Thread Scheduling

B JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

B FIFO Queue is Used if There Are Multiple Threads With the Same
Priority
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Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note — the JVM Does Not Specify Whether Threads are Time-Sliced
or Not

fm 2 ; S V‘ ‘ »
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Time-Slicing

Since the JVM Doesn’'t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
Il perform CPU-intensive task

Thread.yield();

This Yields Control to Another Thread of Equal Priority

fm 2 ; S V‘ ‘ »
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Thread Priorities

Priority Comment
Thread.MIN_PRIORITY Minimum Thread Priority

Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);
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