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Chapter 2:  Operating-System Chapter 2:  Operating-System 
StructuresStructures
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ObjectivesObjectives

 To describe the services an operating system provides to users, 
processes, and other systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized 
and how they boot
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Operating System ServicesOperating System Services

 One set of operating-system services provides functions that are 
helpful to the user:
 User interface - Almost all operating systems have a user interface (UI)

 Varies between Command-Line (CLI), Graphics User Interface 
(GUI), Batch

 Program execution - The system must be able to load a program into 
memory and to run that program, end execution, either normally or 
abnormally (indicating error)

 I/O operations -  A running program may require I/O, which may involve 
a file or an I/O device. 

 File-system manipulation -  The file system is of particular interest. 
Obviously, programs need to read and write files and directories, create 
and delete them, search them, list file Information, permission 
management.
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Operating System Services (Cont.)Operating System Services (Cont.)

 One set of operating-system services provides functions that are 
helpful to the user (Cont):
 Communications – Processes may exchange information, on the same 

computer or between computers over a network

 Communications may be via shared memory or through message 
passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user 
program

 For each type of error, OS should take the appropriate action to 
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and 
programmer’s abilities to efficiently use the system
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Operating System Services (Cont.)Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the 
system itself via resource sharing
 Resource allocation - When  multiple users or multiple jobs running 

concurrently, resources must be allocated to each of them
 Many types of resources -  Some (such as CPU cycles,mainmemory, 

and file storage) may have special allocation code, others (such as I/O 
devices) may have general request and release code. 

 Accounting - To keep track of which users use how much and what kinds 
of computer resources

 Protection and security - The owners of information stored in a multiuser 
or networked computer system may want to control use of that information, 
concurrent processes should not interfere with each other
 Protection involves ensuring that all access to system resources is 

controlled
 Security of the system from outsiders requires user authentication, 

extends to defending external I/O devices from invalid access attempts
 If a system is to be protected and secure, precautions must be 

instituted throughout it. A chain is only as strong as its weakest link.
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User Operating System Interface - CLIUser Operating System Interface - CLI

CLI allows direct command entry

 Sometimes implemented in kernel, sometimes by systems 
program

 Sometimes multiple flavors implemented – shells
 Primarily fetches a command from user and executes it

– Sometimes commands built-in, sometimes just names of 
programs

» If the latter, adding new features doesn’t require shell 
modification
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User Operating System Interface - GUIUser Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause 
various actions (provide information, options, execute function, 
open directory (known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel 
underneath and shells available

 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)
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System CallsSystem Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application 
Program Interface (API) rather than direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API 
for POSIX-based systems (including virtually all versions of UNIX, 
Linux, and Mac OS X), and Java API for the Java virtual machine 
(JVM)

 Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are 
generic)
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Example of System CallsExample of System Calls

 System call sequence to copy the contents of one file to another file
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Example of Standard APIExample of Standard API

 Consider the ReadFile() function in the
 Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile()
 HANDLE file—the file to be read
 LPVOID buffer—a buffer where the data will be read into and written 

from
 DWORD bytesToRead—the number of bytes to be read into the buffer
 LPDWORD bytesRead—the number of bytes read during the last read
 LPOVERLAPPED ovl—indicates if overlapped I/O is being used
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System Call ImplementationSystem Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to 
these numbers

 The system call interface invokes intended system call in OS kernel 
and returns status of the system call and any return values

 The caller need know nothing about how the system call is 
implemented

 Just needs to obey API and understand what OS will do as a 
result call

 Most details of  OS interface hidden from programmer by API  

 Managed by run-time support library (set of functions built 
into libraries included with compiler)
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API – System Call – OS RelationshipAPI – System Call – OS Relationship
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Standard C Library ExampleStandard C Library Example

 C program invoking printf() library call, which calls write() system call
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System Call Parameter PassingSystem Call Parameter Passing

 Often, more information is required than simply identity of desired 
system call
 Exact type and amount of information vary according to OS and 

call
 Three general methods used to pass parameters to the OS

 Simplest:  pass the parameters in registers
  In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and address 
of block passed as a parameter in a register 
 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program 
and popped off the stack by the operating system

 Block and stack methods do not limit the number or length of 
parameters being passed
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Parameter Passing via TableParameter Passing via Table
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Types of System CallsTypes of System Calls

 Process control

 File management

 Device management

 Information maintenance

 Communications
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MS-DOS executionMS-DOS execution

(a) At system startup (b) running a program
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FreeBSD Running Multiple ProgramsFreeBSD Running Multiple Programs
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System ProgramsSystem Programs

 System programs provide a convenient environment for program 
development and execution.  The can be divided into:

 File manipulation 

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users’ view of the operation system is defined by system 
programs, not the actual system calls
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Solaris 10 dtrace Following System CallSolaris 10 dtrace Following System Call
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System ProgramsSystem Programs

 Provide a convenient environment for program development and execution

 Some of them are simply user interfaces to system calls; others are 
considerably more complex

 File management - Create, delete, copy, rename, print, dump, list, and 
generally manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available memory, 
disk space, number of users

 Others provide detailed performance, logging, and debugging 
information

 Typically, these programs format and print the output to the terminal or 
other output devices

 Some systems implement  a registry - used to store and retrieve 
configuration information
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System Programs (cont’d)System Programs (cont’d)

 File modification
 Text editors to create and modify files
 Special commands to search contents of files or perform 

transformations of the text
 Programming-language support - Compilers, assemblers, 

debuggers and interpreters sometimes provided
 Program loading and execution- Absolute loaders, relocatable 

loaders, linkage editors, and overlay-loaders, debugging systems 
for higher-level and machine language

 Communications - Provide the mechanism for creating virtual 
connections among processes, users, and computer systems
 Allow users to send messages to one another’s screens, 

browse web pages, send electronic-mail messages, log in 
remotely, transfer files from one machine to another
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Operating System Design and ImplementationOperating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some 
approaches have proven successful

 Internal structure of different Operating Systems  can vary widely

 Start by defining goals and specifications 

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, 
easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design, 
implement, and maintain, as well as flexible, reliable, error-free, 
and efficient
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Operating System Design and Implementation (Cont.)Operating System Design and Implementation (Cont.)

 Important principle to separate

Policy:   What will be done? 
Mechanism:  How to do it?

 Mechanisms determine how to do something, policies decide what 
will be done

 The separation of policy from mechanism is a very important 
principle, it allows maximum flexibility if policy decisions are to 
be changed later
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Simple Structure Simple Structure 

 MS-DOS – written to provide the most functionality in the least 
space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels 
of functionality are not well separated



2.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MS-DOS Layer StructureMS-DOS Layer Structure
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Layered ApproachLayered Approach

 The operating system is divided into a number of layers (levels), 
each built on top of lower layers.  The bottom layer (layer 0), is the 
hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions 
(operations) and services of only lower-level layers



2.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Layered Operating SystemLayered Operating System
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UNIXUNIX

 UNIX – limited by hardware functionality, the original UNIX operating 
system had limited structuring.  The UNIX OS consists of two 
separable parts

 Systems programs

 The kernel

 Consists of everything below the system-call interface and 
above the physical hardware

 Provides the file system, CPU scheduling, memory 
management, and other operating-system functions; a large 
number of functions for one level
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UNIX System StructureUNIX System Structure
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Microkernel System Structure Microkernel System Structure 

 Moves as much from the kernel into “user” space

 Communication takes place between user modules using message 
passing

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space 
communication
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Mac OS X StructureMac OS X Structure
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ModulesModules

 Most modern operating systems implement kernel modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible
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Solaris Modular ApproachSolaris Modular Approach
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Virtual MachinesVirtual Machines

 A virtual machine takes the layered approach to its logical 
conclusion.  It treats hardware and the operating system kernel 
as though they were all hardware

 A virtual machine provides an interface identical to the 
underlying bare hardware

 The operating system creates the illusion of multiple 
processes, each executing on its own processor with its own 
(virtual) memory
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Virtual Machines (Cont.)Virtual Machines (Cont.)

 The resources of the physical computer are shared to create the 
virtual machines

 CPU scheduling can create the appearance that users have 
their own processor

 Spooling and a file system can provide virtual card readers and 
virtual line printers

 A normal user time-sharing terminal serves as the virtual 
machine operator’s console
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Virtual Machines (Cont.)Virtual Machines (Cont.)

                             (a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine
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Virtual MachinesVirtual Machines (Cont.) (Cont.)

 The virtual-machine concept provides complete protection of system 
resources since each virtual machine is isolated from all other virtual 
machines.  This isolation, however, permits no direct sharing of 
resources.

 A virtual-machine system is a perfect vehicle for operating-systems 
research and development.  System development is done on the 
virtual machine, instead of on a physical machine and so does not 
disrupt normal system operation.

 The virtual machine concept is difficult to implement due to the effort 
required to provide an exact duplicate to the underlying machine
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VMware ArchitectureVMware Architecture
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The Java Virtual MachineThe Java Virtual Machine
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Operating System GenerationOperating System Generation

 Operating systems are designed to run on any of a class of 
machines; the system must be configured for each specific 
computer site

 SYSGEN program obtains information concerning the specific 
configuration of the hardware system

 Booting – starting a computer by loading the kernel

 Bootstrap program – code stored in ROM that is able to locate the 
kernel, load it into memory, and start its execution
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System BootSystem Boot

 Operating system must be made available to hardware so 
hardware can start it

 Small piece of code – bootstrap loader, locates the kernel, 
loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed 
location loads bootstrap loader

 When power initialized on system, execution starts at a fixed 
memory location

 Firmware used to hold initial boot code
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