Chapter 4: Threads
QIBBBIIGIIBDIICIIBD DI IIBDIIG




Chapter 4: Threads

Overview
Multithreading Models
Threading Issues
Pthreads

Windows XP Threads
Linux Threads

Java Threads

Operating System Concepts 4.2



Single and Multithreaded Processes

code code data files

registers registers (|| registers ||| registers

stack stack stack

thread —» ;

single-threaded process multithreaded

Operating System Concepts 4.3 Silberschatz, Galvin and Gagne ©»2fOS



Benefits

Responsiveness
B Resource Sharing
B Economy

B Utilization of MP Architectures

Operating System Concepts 4.4 Silberschatz, Galvin and Gagne ©2005



User Threads

B Thread management done by user-level threads library

B Three primary thread libraries:
® POSIX Pthreads
® Win32 threads
® Java threads

Operating System Concepts 45 Silberschatz, Galvin and Gagne ©2005



Kernel Threads

B Supported by the Kernel

B Examples
® Windows XP/2000
Solaris
Linux
Tru64 UNIX
Mac OS X

Operating System Concepts 4.6



Multithreading Models

B Many-to-One
B One-to-One

B Many-to-Many

Operating System Concepts 4.7



Many-to-One

B Many user-level threads mapped to single kernel thread
B Examples:

® Solaris Green Threads

® GNU Portable Threads

Operating System Concepts 4.8



Many-to-One Model

«——user thread|

«—— kernel thread

Operating System Concepts 4.9 Silberschatz, Galvin and Gagne ©5



One-to-One

B Each user-level thread maps to kernel thread
B Examples

® Windows NT/XP/2000

® Linux

® Solaris 9 and later

Operating System Concepts 4.10



One-to-one Model

<«—— user thread

T
b

Operating System Concepts 411 Silberschatz, Galvin and Gagne 205




Many-to-Many Model

B Allows many user level threads to be mapped to many kernel
threads

B Allows the operating system to create a sufficient number of
kernel threads

B Solaris prior to version 9
B Windows NT/2000 with the ThreadFiber package

fm 2 ; S V‘ ‘ »
Operating System Concepts 412 Silberschatz, Galvin and Gagne ©2005



Operating System Concepts

Many-to-Many Model

<«—— user thread

<«—— Kkernel thread

4.13

Silberschatz, Galvin ang Gagne 205



Two-level Model

B Similar to M:M, except that it allows a user thread to be
bound to kernel thread

B Examples
® |RIX
® HP-UX
® Tru64 UNIX
® Solaris 8 and earlier

vt "
Operating System Concepts 414 Silberschatz, Galvin and Gagne ©2005



Two-level Model

«—— user thread

Operating System Concepts 415 Silberschatz, Galvin and Gagne 05



Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation

Signal handling

Thread pools

Thread specific data

Scheduler activations

\ o

Operating System Concepts 416 Silberschatz, Galvin and Gagne ©2005



Semantics of fork() and exec()

B Does fork() duplicate only the calling thread or all threads?

Operating System Concepts 4.17



Thread Cancellation

B Terminating a thread before it has finished
B Two general approaches:

® Asynchronous cancellation terminates the target
thread immediately

® Deferred cancellation allows the target thread to
periodically check if it should be cancelled

fm 2 ; S V‘ ‘ »
Operating System Concepts 418 Silberschatz, Galvin and Gagne ©2005



Signal Handling

B Signals are used in UNIX systems to notify a process that a
particular event has occurred

B Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled
B Options:
® Deliver the signal to the thread to which the signal applies
® Deliver the signal to every thread in the process
® Deliver the signal to certain threads in the process
® Assign a specific threa to receive all signals for the process

Ve v "
Operating System Concepts 419 Silberschatz, Galvin and Gagne ©2005



Thread Pools

B Create a number of threads in a pool where they await work

B Advantages:
® Usually slightly faster to service a request with an existing
thread than create a new thread

® Allows the number of threads in the application(s) to be
bound to the size of the pool

o | ,; (

Operating System Concepts 4.20 Silberschatz, Galvin and Gagne ©2005



Thread Specific Data

B Allows each thread to have its own copy of data

B Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

Operating System Concepts 421



Scheduler Activations

B Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads allocated
to the application

B Scheduler activations provide upcalls - a communication
mechanism from the kernel to the thread library

B This communication allows an application to maintain the
correct number kernel threads

V = ":7 . o
Operating System Concepts 4.22 Silberschatz, Galvin and Gagne ©2005



Pthreads

B A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

B API specifies behavior of the thread library,
implementation is up to development of the library

B Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

R b
Operating System Concepts 423 Silberschatz, Galvin and Gagne ©2005



Windows XP Threads

B |mplements the one-to-one mapping
B Each thread contains
® Athreadid
® Register set
® Separate user and kernel stacks
® Private data storage area

B The register set, stacks, and private storage area are known
as the context of the threads

B The primary data structures of a thread include:
® ETHREAD (executive thread block)
® KTHREAD (kernel thread block)
® TEB (thread environment block)

R o
Operating System Concepts 4.24 Silberschatz, Galvin and Gagne ©2005



Linux Threads

B Linux refers to them as tasks rather than threads
B Thread creation is done through clone() system call

B clone() allows a child task to share the address space
of the parent task (process)

Operating System Concepts 4.25



Java Threads

B Java threads are managed by the JVM

B Java threads may be created by:

® Extending Thread class
® Implementing the Runnable interface

Operating System Concepts 4.26 Silberschatz, Galvin and Gagne ©2005



Java Thread States

blocked

Operating System Concepts 4.27 Silberschatz, Galvin and Gagne 2005



End of Chapter 4
QIBBBIIGIIBDIICIIBD DI IIBDIIG




