

Chapter 7: DeadlocksChapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 7: DeadlocksChapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter ObjectivesChapter Objectives

 To develop a description of deadlocks, which prevent
sets of concurrent processes from completing their tasks

 To present a number of different methods for preventing
or avoiding deadlocks in a computer system.

7.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Deadlock ProblemThe Deadlock Problem

 A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set.

 Example

 System has 2 tape drives.

 P1 and P2 each hold one tape drive and each needs another
one.

 Example

 semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)

wait (B); wait(A)

7.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bridge Crossing ExampleBridge Crossing Example

 Traffic only in one direction.

 Each section of a bridge can be viewed as a resource.

 If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

 Several cars may have to be backed up if a deadlock
occurs.

 Starvation is possible.

7.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System ModelSystem Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request

 use

 release

7.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock CharacterizationDeadlock Characterization

 Mutual exclusion: only one process at a time can use a
resource.

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.

 No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by

P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

7.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource-Allocation GraphResource-Allocation Graph

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system.

 request edge – directed edge P1 → Rj

 assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

7.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource-Allocation Graph (Cont.)Resource-Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of a Resource Allocation GraphExample of a Resource Allocation Graph

7.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource Allocation Graph With A DeadlockResource Allocation Graph With A Deadlock

7.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource Allocation Graph With A Cycle But No DeadlockResource Allocation Graph With A Cycle But No Deadlock

7.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic FactsBasic Facts

 If graph contains no cycles ⇒ no deadlock.

 If graph contains a cycle ⇒
 if only one instance per resource type, then deadlock.

 if several instances per resource type, possibility of
deadlock.

7.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Methods for Handling DeadlocksMethods for Handling Deadlocks

 Ensure that the system will never enter a deadlock state.

 Allow the system to enter a deadlock state and then
recover.

 Ignore the problem and pretend that deadlocks never occur
in the system; used by most operating systems, including
UNIX.

7.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock PreventionDeadlock Prevention

 Mutual Exclusion – not required for sharable resources;
must hold for nonsharable resources.

 Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources.

 Require process to request and be allocated all its
resources before it begins execution, or allow process
to request resources only when the process has none.

 Low resource utilization; starvation possible.

Restrain the ways request can be made.

7.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock Prevention (Cont.)Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released.

 Preempted resources are added to the list of resources for
which the process is waiting.

 Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

 Circular Wait – impose a total ordering of all resource types,
and require that each process requests resources in an
increasing order of enumeration.

7.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock AvoidanceDeadlock Avoidance

 Simplest and most useful model requires that each process
declare the maximum number of resources of each type
that it may need.

 The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can never
be a circular-wait condition.

 Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Requires that the system has some additional a priori information
available.

7.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Safe StateSafe State

 When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

 System is in safe state if there exists a safe sequence of all
processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that
Pi can still request can be satisfied by currently available resources
+ resources held by all the Pj, with j<I.

 If Pi resource needs are not immediately available, then Pi can
wait until all Pj have finished.

 When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

 When Pi terminates, Pi+1 can obtain its needed resources, and
so on.

7.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic FactsBasic Facts

 If a system is in safe state ⇒ no deadlocks.

 If a system is in unsafe state ⇒ possibility of deadlock.

 Avoidance ⇒ ensure that a system will never enter an
unsafe state.

7.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Safe, Unsafe , Deadlock State Safe, Unsafe , Deadlock State

7.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource-Allocation Graph AlgorithmResource-Allocation Graph Algorithm

 Claim edge Pi → Rj indicated that process Pj may request
resource Rj; represented by a dashed line.

 Claim edge converts to request edge when a process
requests a resource.

 When a resource is released by a process, assignment edge
reconverts to a claim edge.

 Resources must be claimed a priori in the system.

7.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource-Allocation Graph For Deadlock AvoidanceResource-Allocation Graph For Deadlock Avoidance

7.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Unsafe State In Resource-Allocation GraphUnsafe State In Resource-Allocation Graph

7.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Banker’s AlgorithmBanker’s Algorithm

 Multiple instances.

 Each process must a priori claim maximum use.

 When a process requests a resource it may have to wait.

 When a process gets all its resources it must return them in
a finite amount of time.

7.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Data Structures for the Banker’s Algorithm Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available.

 Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

7.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Safety AlgorithmSafety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available

Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:

(a) Finish [i] = false

(b) Needi ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe
state.

7.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource-Request Algorithm for Process Resource-Request Algorithm for Process PPii

 Request = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must
wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available = Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe ⇒ the resources are allocated to Pi.
 If unsafe ⇒ Pi must wait, and the old resource-allocation

state is restored

7.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Banker’s AlgorithmExample of Banker’s Algorithm

 5 processes P0 through P4; 3 resource types A
(10 instances),
B (5instances, and C (7 instances).

 Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

7.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example (Cont.)Example (Cont.)

 The content of the matrix. Need is defined to be Max – Allocation.

Need

A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2,
P0> satisfies safety criteria.

7.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example Example PP11 Request (1,0,2) (Cont.) Request (1,0,2) (Cont.)

 Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true.

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence <P1, P3, P4, P0,
P2> satisfies safety requirement.

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?

7.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock DetectionDeadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

7.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Single Instance of Each Resource Single Instance of Each Resource
TypeType

 Maintain wait-for graph

 Nodes are processes.

 Pi → Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for a cycle in
the graph.

 An algorithm to detect a cycle in a graph requires an order
of n2 operations, where n is the number of vertices in the
graph.

7.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource-Allocation Graph and Wait-for GraphResource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

7.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Several Instances of a Resource TypeSeveral Instances of a Resource Type

 Available: A vector of length m indicates the number of
available resources of each type.

 Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each process.

 Request: An n x m matrix indicates the current request of
each process. If Request [ij] = k, then process Pi is
requesting k more instances of resource type. Rj.

7.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Detection AlgorithmDetection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi ≠ 0, then
Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti ≤ Work

If no such i exists, go to step 4.

7.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Detection Algorithm (Cont.)Detection Algorithm (Cont.)

3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the
system is in deadlocked state.

7.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Detection AlgorithmExample of Detection Algorithm

 Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

7.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example (Cont.)Example (Cont.)

 P2 requests an additional instance of type C.

Request

A B C

 P0 0 0 0

 P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient
resources to fulfill other processes; requests.

 Deadlock exists, consisting of processes P1, P2, P3, and P4.

7.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Detection-Algorithm UsageDetection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be many
cycles in the resource graph and so we would not be able to tell
which of the many deadlocked processes “caused” the deadlock.

7.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Recovery from Deadlock: Process TerminationRecovery from Deadlock: Process Termination

 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is eliminated.

 In which order should we choose to abort?

 Priority of the process.

 How long process has computed, and how much longer to
completion.

 Resources the process has used.

 Resources process needs to complete.

 How many processes will need to be terminated.

 Is process interactive or batch?

7.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Recovery from Deadlock: Resource PreemptionRecovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process for that state.

 Starvation – same process may always be picked as victim,
include number of rollback in cost factor.

End of Chapter 7End of Chapter 7

