Chapter 9: Virtual Memory
QIBBBIIGIIBDIICIIBD DI IIBDIIG

Chapter 9: Virtual Memory

Background

Demand Paging
Process Creation
Page Replacement
Allocation of Frames
Thrashing

Demand Segmentation

Operating System Examples

) " b y

Operating System Concepts 9.2 Silberschatz, Galvin and Gagne ©2005

Background

B Virtual memory — separation of user logical memory from physical
memory.

® Only part of the program needs to be in memory for execution.

® Logical address space can therefore be much larger than
physical address space.

® Allows address spaces to be shared by several processes.

® Allows for more efficient process creation.

B Virtual memory can be implemented via:
® Demand paging
® Demand segmentation

- g

Operating System Concepts 9.3 Silberschatz, Galvin and Gagne ©2005

Virtual Memory That is Larger Than Physical Memory

page 0
page 1
page 2 A
:*w
~ L] L]
\ - ECO N
L] L]
T~——bE O ®
L] L]
mapryr v
page v physical
virtual memery
memory

Operating System Concepts 9.4

Operating System Concepts

Virtual-address Space

IMax

stack

heap

data

code

o915

Silberschatz, Galvin and\ Gagne 05

Shared Library Using Virtual Memory

stack

l

stack

l

_ shared !
shared library pages shared library
heap heap
data data
code code
g
Operating System Concepts 9.6 Silberschatz, Galvin and Gagne ©2005

Demand Paging

B Bring a page into memory only when it is needed
® Less I/O needed
® Less memory needed
® Faster response
® More users

B Page is needed O reference to it
® invalid reference 0 abort

® not-in-memory O bring to memory'

Operating System Concepts 9.7

s o

Silberschatz, Galvin and Gagne ©2005

<
pro%ram \ swap out ol 1 2 3[]
L1 50 o1 701
’ 8] 9101
b 12113141151

program
B "\ swap in 16|:|17;|18|_|__|19|¥
< 2021 l22[23] |
main
memory

Operating System Concepts 9.8 Silberschatz, Galvin and Gagne 2005

Valid-Invalid Bit

B With each page table entry a valid—invalid bit is associated
(1 O in-memory, 0 [0 not-in-memory)

B |nitially valid—invalid but is set to 0 on all entries

|

Example of a page table snapshot:

Frame # valid-invalid bit

page table

B During address translation, if valid—invalid bit in page table entry is 0 [J
page fault

Operating System Concepts 9.9

Operating System Concepts

Olm| MmO O | @ | >

H

logical
memory

frame

valid—invalid
bit

v

4

6

~N 3O O W N =2 o

page table

c o N OO o s W N

—
(]

11

12

13

14

15

physical memory

HENEE
[] [a] [E]
[¢] [o] [E]
m (][]
[][] []

9.10

Page Table When Some Pages Are Not in Main Memory

Silberschatz, Galvin and\ Gagne 05

Page Fault

B [f there is ever a reference to a page, first reference will trap to
OS [0 page fault

B OS looks at another table to decide:
® Invalid reference O abort.
® Just not in memory.

Get empty frame.

Swap page into frame.

Reset tables, validation bit = 1.

Restart instruction: Least Recently Used
® Dblock move

® auto increment/decrement location

Operating System Concepts 9.11

Steps in Handling a Page Fault

page is on
backing store

A

\p/

operating
system

@

reference
trap

load M

B —

@J@

restart page table

instruction
free frame '« = I 4
reset page bring in
table missing page
physical
memory

Operating System Concepts 9.12

What happens if there is no free frame?

B Page replacement — find some page in memory, but not
really in use, swap it out

® algorithm

® performance — want an algorithm which will result in
minimum number of page faults

B Same page may be brought into memory several times

Operating System Concepts 9.13

Performance of Demand Paging

B Page Fault Rate0<p<1.0
® if p = 0 no page faults
® if p =1, every reference is a fault

B FEffective Access Time (EAT)
EAT = (1 — p) X memory access
+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Operating System Concepts 9.14

Demand Paging Example

B Memory access time = 1 microsecond

B 50% of the time the page that is being replaced has been modified
and therefore needs to be swapped out

B Swap Page Time = 10 msec = 10,000 msec
EAT =(1 —p) x 1+ p (15000)
1+ 15000P (in msec)

3Ny
o N ;' -4 ,

Operating System Concepts 9.15 Silberschatz, Galvin and Gagne ©2005

Process Creation

B Virtual memory allows other benefits during process creation:
- Copy-on-Write

- Memory-Mapped Files (later)

vt "
Operating System Concepts 9.16 Silberschatz, Galvin and Gagne ©2005

Copy-on-Write

B Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied

B COW allows more efficient process creation as only modified pages
are copied

B Free pages are allocated from a pool of zeroed-out pages

V = ":7 . o
Operating System Concepts 9.17 Silberschatz, Galvin and Gagne ©2005

Page Replacement

B Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

B Use modify (dirty) bit to reduce overhead of page transfers — only
modified pages are written to disk

B Page replacement completes separation between logical memory
and physical memory — large virtual memory can be provided on a
smaller physical memory

— ot
/ e~ ,:"f :‘ ,.‘

Operating System Concepts 9.18 Silberschatz, Galvin and Gagne ©2005

Need For Page Replacement

0 H frame
1| load M
PC —»
2 J
3 M
logical memory
for user 1
0 A frame
1 B
2 D
3 E
logical memory
for user 2

valid—i_nvalid

a
— < | <

page table

for user 1

valid—invalid
bit

N ¥

6 |V

i
2 |v
7 |V

page table

for user 2

monitor

E

physical
memory

Operating System Concepts

9.19

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update the
page and frame tables.

4. Restart the process

Operating System Concepts 9.20 Silberschatz, Galvin and Gagne ©2005

Page Replacement

Iframe valid—invalid bit

N R

swap out
Change victim
0 |i to invalid page
t|v @/'
(:) f| victim 9

reset page ‘h“.."hn!:
table for

page table
new page @ swap \

desired
page in

physical
memory

Operating System Concepts 9.21 Silberschatz, Galvin and Gagne 20b5

Page Replacement Algorithms

B \Want lowest page-fault rate

B Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

B |n all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5

o N ;' -4 ,

Operating System Concepts 9.22 Silberschatz, Galvin and Gagne ©2005

—_
o

number of page faults

(N L * 2 B ¢ ¢

S

2 3 4

number of frames

Operating System Concepts

9.23

Silberschatz, Galvin anJ Gagne ©2005

First-In-First-Out (FIFO) Algorithm

B Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5
B 3 frames (3 pages can be in memory at a time per process)

2 12| 1 3 9page faults

W 4 frames 3(3|2 4
1115 4
2 2|1 5 10page faults
3|32
4 1413

B FIFO Replacement — Belady's Anomaly
® more frames O more page faults

Operating System Concepts 9.24

FIFO Page Replacement

Ireference string

/7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0
2] 2| 4] 4| 4] 0 o |0
| o] [o] |o 1] |0
LB B (o] [of [of [3) (3

page frames

1

Operating System Concepts 9.25

FIFO lllustrating Belady's Anomaly

—_
(o))

—
LN

number of page faults
S N
&

(N C N ©) BN o)

1 2 3 4 5 6 7‘
number of frames

Operating System Concepts 9.26 Silberschatz, Galvin and Gagne ©2005

Optimal Algorithm

B Replace page that will not be used for longest period of time

B 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

A TW DN |

B How do you know this?
B Used for measuring how well your algorithm performs

Operating System Concepts 9.27

Optimal Page Replacement

reference string
2 3 0 3 2 1 2 0 1 7 0 A1

7 0 1 2 0 3 0 4
| 19] [o] o] o o 0]
HRERERi

page frames

L

Operating System Concepts 9.28 Silberschatz, Galvin and Gagne 05

Least Recently Used (LRU) Algorithm

B Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5

15

2

3|5 4
413

B Counter implementation

® Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

® When a page needs to be changed, look at the counters to
determine which are to change

| ,; (

Operating System Concepts 9.29 Silberschatz, Galvin and Gagne ©2005

LRU Page Replacement

Ireference string

/7 0 1 2 0 3 0 4 2 3 0 3 2 1 2

4] 4] 4] o]
(o] [o] [o] |o] o] |o] |3] |3 o o
HaERER

page frames

Operating System Concepts 9.30

LRU Algorithm (Cont.)

B Stack implementation — keep a stack of page numbers in a double
link form:

® Page referenced:

» move it to the top

> requires 6 pointers to be changed
® No search for replacement

Operating System Concepts 9.31

Use Of A Stack to Record The Most Recent Page References

Ireference string
4 7 o 7 1 o0 1 2 1 2 7 1 2

2 N
a b

1 2

0 1

7 0

4 4

stack stack

before after

a b

Operating System Concepts 9.32 Silberschatz, Galvin and Gagne 205

LRU Approximation Algorithms

B Reference bit
® With each page associate a bit, initially = 0
® When page is referenced bit set to 1

® Replace the one which is O (if one exists). We do not know the
order, however.

B Second chance
® Need reference bit
® Clock replacement

® If page to be replaced (in clock order) has reference bit = 1
then:

> set reference bit O
> leave page in memory
» replace next page (in clock order), subject to same rules

Operating System Concepts 9.33

Operating System Concepts

reference pages
bits

- e e =

v
_/

circular queue of pages

(a)

reference pages
bits

e PR FE FE

I
HH--é@EEE

circular queue of pages

(b)

9.34

Counting Algorithms

B Keep a counter of the number of references that have been
made to each page

B | FU Algorithm: replaces page with smallest count

B MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet to
be used

Operating System Concepts 9.35

Allocation of Frames

B Each process needs minimum number of pages
B Example: IBM 370 — 6 pages to handle SS MOVE instruction:
® instruction is 6 bytes, might span 2 pages
® 2 pages to handle from
® 2 pages to handle to
B Two major allocation schemes
® fixed allocation
® priority allocation

fm 2 ; S V‘ ‘ »
Operating System Concepts 9.36 Silberschatz, Galvin and Gagne ©2005

Fixed Allocation

B Equal allocation — For example, if there are 100 frames and 5
processes, give each process 20 frames.

B Proportional allocation — Allocate according to the size of process
— §,= size of process p;
— 8= Z S
— m= total number of frames

S.
— a,= allocation for pl-=§l><m

m=64
s;=10
322127
1-£><64N5
137
127
=——X64~59
427137

Operating System Concepts 9.37 Silberschatz, Galvin and Gagne ©2005

Priority Allocation

B Use a proportional allocation scheme using priorities rather
than size

B If process P, generates a page fault,

® select for replacement one of its frames

® select for replacement a frame from a process with
lower priority number

Operating System Concepts 9.38

Global vs. Local Allocation

B Global replacement — process selects a replacement
frame from the set of all frames; one process can take a
frame from another

B | ocal replacement — each process selects from only its
own set of allocated frames

Operating System Concepts 9.39 Silberschatz, Galvin and Gagne ©2005

Thrashing

B |f a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

® |ow CPU utilization

® operating system thinks that it needs to increase the degree of
multiprogramming

® another process added to the system

B Thrashing = a process is busy swapping pages in and out

. 3
R il

Operating System Concepts 9.40 Silberschatz, Galvin and Gagne ©2005

Thrashing (Cont.)

I
| thrashing

CPU utilization

degree of multiprogramming

Operating System Concepts 9.41

Demand Paging and Thrashing

B Why does demand paging work?
Locality model

® Process migrates from one locality to another
® Localities may overlap

B Why does thrashing occur?
2 size of locality > total memory size

Operating System Concepts 9.42 Silberschatz, Galvin and Gagne ©2005

Locality In A Memory-Reference Pattern

: l lw' il IIIIIIII lili:;""' '”II?I' '”""':ilu W |;i I ||W!i“j'j“

e “}W . "'|
I‘IH“' | !l ! I.|.| ||i'|| jlut '“”,. : .'|
it 'llll'! ML i
-!||=| T ||.|I ! 4 !
30 | i |||
||‘! ||“|1||‘ |||‘|“”| “'““. || |||!|I|I I|||IIIlI|||I |||I||u||| |”| |||.I|. .-.I!“
28
w
4
=l
= .
> 26 i
]
£
©
£

T i il
i ok Ly kel

T ”I I s i ||i|| | ”l ' IF[
i i il Ul ||

L

| [l
. L,
.;:I: II[|].|]I i |=:|

Ly n, ||
20 pu— 1”” o[” T
S '“!-'"Il!-“ l'lll N LI ||| |"'H

I ||||| || 0 70 L 8 PO

page numbers

P T L0 e MHI il "Iu uH""

execution time ——

Operating System Concepts 9.43 Silberschatz, Galvin and Gagne ©205

Working-Set Model

B A =working-set window = a fixed number of page references
Example: 10,000 instruction

B WSS, (working set of Process P,) =
total number of pages referenced in the most recent A (varies

In time)
® if A too small will not encompass entire locality
® if A too large will encompass several localities
® if A=o00 O will encompass entire program

B D=2>WSS, =total demand frames

if D>m 0 Thrashing
B Policy if D > m, then suspend one of the processes

Ve v "
Operating System Concepts 0.44 Silberschatz, Galvin and Gagne ©2005

Working-set model

page reference table
. ..2615777751623412344434344413234443444 ...

R T

3 ,
WS(t,) = {1,2,5,6,7} WS(t,) = {3.4)

Operating System Concepts 9.45 Silberschatz, Galvin and Gagne 205

Keeping Track of the Working Set

B Approximate with interval timer + a reference bit
B Example: A=10,000
® Timer interrupts after every 5000 time units
® Keep in memory 2 bits for each page

® Whenever a timer interrupts copy and sets the values of all
reference bits to O

® If one of the bits in memory = 1 [0 page in working set
B Why is this not completely accurate?
B |mprovement = 10 bits and interrupt every 1000 time units

R b
Operating System Concepts 9.46 Silberschatz, Galvin and Gagne ©2005

Page-Fault Frequency Scheme

B Establish “acceptable” page-fault rate
® |If actual rate too low, process loses frame
® |f actual rate too high, process gains frame

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

number of frames 1

, R gy =

Operating System Concepts 9.47 Silberschatz, Galvin and\ Gagne ©2‘005

Memory-Mapped Files

B Memory-mapped file I/O allows file 1/O to be treated as routine
memory access by mapping a disk block to a page in memory

B A file is initially read using demand paging. A page-sized portion of
the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

B Simplifies file access by treating file I/O through memory rather
than read() write() system calls

B Also allows several processes to map the same file allowing the
pages in memory to be shared

NG
Operating System Concepts 9.48 Silberschatz, Galvin and Gagne ©2005

Memory Mapped Files

r—--- 1
N
i——r——‘l-— 3
- - - -- R
2 - 3 «d b6
3 FH---r ;'r:‘rr- 6
4 E—— | . :
5 [t 6 pini R
6 —+JI-:—+‘ L :
I P
HEsR
processA 'Ll _[]3] «——|--! : I process B
firtual memory: :_ < | :virtual memory
o ::
O e s SEEL
R e 2 IH----
physical memory
— —
(1123145 6]
disk file

Operating System Concepts 9.49 Silberschatz, Galvin and Gagne ©'2“‘05

Memory-Mapped Files in Java

import java.io.*;
import java.nio.*;
Import java.nio.channels.*;
public class MemoryMapReadOnly
{
/Il Assume the page size is 4 KB
public static final int PAGE SIZE = 4096;
public static void main(String args]]) throws IOException {
RandomAccessFile inFile = new RandomAccessFile(args[0],"r");
FileChannel in = inFile.getChannel();
MappedByteBuffer mappedBuffer =
in.map(FileChannel.MapMode.READ ONLY, 0, in.size());
long numPages = in.size() / (long)PAGE SIZE;
if (in.size() % PAGE SIZE > 0)
++numPages;

Operating System Concepts 9.50

Memory-Mapped Files in Java (cont)

Il we will "touch" the first byte of every page

int position = 0;

for (long i = 0; i < numPages; i++) {
byte item = mappedBuffer.get(position);
position += PAGE SIZE;

}

in.close();

inFile.close();

}
B The API for the map() method is as follows:

map(mode, position, size)

. , 4
Operating System Concepts 9.51 Silberschatz, Galvin and Gagne ©2005

Other Issues -- Prepaging

B Prepaging

® To reduce the large number of page faults that occurs at process
startup

® Prepage all or some of the pages a process will need, before
they are referenced

® But if prepaged pages are unused, I/O and memory was wasted
® Assume s pages are prepaged and of the pages is used

» Iscostof s* save pages faults > or < than the cost of
prepaging
s * (1-) unnecessary pages?

> near zero [J prepaging loses

— ot
BN i O
Y R

Operating System Concepts 9.52 Silberschatz, Galvin and Gagne ©2005

Other Issues — Page Size

B Page size selection must take into consideration:
® fragmentation
® table size
® 1/O overhead

® Jocality

. v - (
Operating System Concepts 9.53 STl G e Csaie O2i5E

Other Issues — TLB Reach

B TLB Reach - The amount of memory accessible from the TLB
B TLB Reach = (TLB Size) X (Page Size)

B |deally, the working set of each process is stored in the TLB.
Otherwise there is a high degree of page faults.

B |ncrease the Page Size. This may lead to an increase in
fragmentation as not all applications require a large page size

B Provide Multiple Page Sizes. This allows applications that
require larger page sizes the opportunlty to use them without
an increase in fragmentation.

Operating System Concepts 9.54 Silberschatz, Galvin and Gagne ©2005

Other Issues — Program Structure

B Program structure
® Int[128,128] data;
® Each row is stored in one page
® Program 1

for j =0;] <128; j++)
for (i=0;1<128; i++)
datali,j] = O;

128 x 128 = 16,384 page faults
® Program 2
for (1=0;1<128; i++)
for (j = 0;]<128; j++)
datali,j] = 0;

128 page faults

Operating System Concepts 9.55 Silberschatz, Galvin and Gagne ©2005

Other Issues — I/O interlock

B |/O Interlock — Pages must sometimes be locked into
memory

B Consider I/O. Pages that are used for copying a file from
a device must be locked from being selected for eviction
by a page replacement algorithm.

Operating System Concepts 9.56

Reason Why Frames Used For I/O Must Be In Memory

buffer i @

disk drive

Operating System Concepts 9.57

Operating System Examples

B Windows XP

B Solaris

Operating System Concepts 9.58 Silberschatz, Galvin and Gagne ©»2fOS

Windows XP

B Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page.

B Processes are assigned working set minimum and working set
maximum

B Working set minimum is the minimum number of pages the process
IS guaranteed to have in memory

B A process may be assigned as many pages up to its working set
maximum

B When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory

B Working set trimming removes pages from processes that have
pages in excess of their working set minimum

V = ":7 . o
Operating System Concepts 9.59 Silberschatz, Galvin and Gagne ©2005

Solaris

Maintains a list of free pages to assign faulting processes

Lotsfree — threshold parameter (amount of free memory) to begin
paging

Desfree — threshold parameter to increasing paging

Minfree — threshold parameter to being swapping

Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned This ranges from
slowscan to fastscan

Pageout is called more frequently depending upon the amount of
free memory available

Operating System Concepts 9.60 Silberschatz, Galvin and Gagne ©2005

Solaris 2 Page Scanner

8192 |
fastscan

scan rate

100
slowscan

| | »
I I I

minfree desfree lotsfree
amount of free memory

Operating System Concepts 9.61

End of Chapter 9
QIBBBIIGIIBDIICIIBD DI IIBDIIG

