

Chapter 6: Process SynchronizationChapter 6: Process Synchronization

6.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Module 6: Process SynchronizationModule 6: Process Synchronization

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples
 Atomic Transactions

6.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BackgroundBackground

 Concurrent access to shared data may result in data
inconsistency

 Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We
can do so by having an integer count that keeps track of
the number of full buffers. Initially, count is set to 0. It is
incremented by the producer after it produces a new
buffer and is decremented by the consumer after it
consumes a buffer.

6.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Producer Producer

while (true)

 /* produce an item and put in nextProduced

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

6.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ConsumerConsumer

 while (1)

 {

while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/* consume the item in nextConsumed

}

6.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Race ConditionRace Condition

 count++ could be implemented as

 register1 = count
 register1 = register1 + 1
 count = register1

 count-- could be implemented as

 register2 = count
 register2 = register2 - 1
 count = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

6.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution to Critical-Section ProblemSolution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,
then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section and
before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

6.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Peterson’s SolutionPeterson’s Solution

 Two process solution
 Assume that the LOAD and STORE instructions are atomic;

that is, cannot be interrupted.
 The two processes share two variables:

 int turn;
 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the
critical section.

 The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that process Pi
is ready!

6.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Algorithm for Process Algorithm for Process PPii

do {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

 CRITICAL SECTION

 flag[i] = FALSE;

 REMAINDER SECTION

 } while (TRUE);

6.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Synchronization HardwareSynchronization Hardware

 Many systems provide hardware support for critical section
code

 Uniprocessors – could disable interrupts
 Currently running code would execute without

preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware

instructions
 Atomic = non-interruptable

 Either test memory word and set value
 Or swap contents of two memory words

6.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TestAndndSet Instruction TestAndndSet Instruction

 Definition:

 boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

6.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution using TestAndSetSolution using TestAndSet

 Shared boolean variable lock., initialized to false.
 Solution:

 do {

 while (TestAndSet (&lock))

 ; /* do nothing

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

6.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Swap InstructionSwap Instruction

 Definition:

 void Swap (boolean *a, boolean *b)

 {

 boolean temp = *a;

 *a = *b;

 *b = temp:

 }

6.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution using SwapSolution using Swap

 Shared Boolean variable lock initialized to FALSE; Each
process has a local Boolean variable key.

 Solution:

 do {

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

6.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SemaphoreSemaphore

 Synchronization tool that does not require busy waiting
 Semaphore S – integer variable
 Two standard operations modify S: wait() and signal()

 Originally called P() and V()
 Less complicated
 Can only be accessed via two indivisible (atomic) operations

 wait (S) {

 while S <= 0

 ; // no-op

 S--;

 }
 signal (S) {

 S++;

 }

6.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore as General Synchronization ToolSemaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an
unrestricted domain

 Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement

 Also known as mutex locks

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

 Semaphore S; // initialized to 1

 wait (S);

 Critical Section

 signal (S);

6.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore ImplementationSemaphore Implementation

 Must guarantee that no two processes can execute wait () and
signal () on the same semaphore at the same time

 Thus, implementation becomes the critical section problem
where the wait and signal code are placed in the crtical section.

 Could now have busy waiting in critical section
implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections
and therefore this is not a good solution.

6.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Implementation with no Busy waitingSemaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue.
Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the
appropriate waiting queue.

 wakeup – remove one of processes in the waiting queue
and place it in the ready queue.

6.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Implementation with no Busy waitingSemaphore Implementation with no Busy waiting (Cont.)(Cont.)

 Implementation of wait:

 wait (S){
 value--;
 if (value < 0) {

 add this process to waiting queue
 block(); }

 }

 Implementation of signal:

 Signal (S){
 value++;
 if (value <= 0) {

 remove a process P from the waiting queue
 wakeup(P); }

 }

6.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock and StarvationDeadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

. .

. .

. .

 signal (S); signal (Q);

 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

6.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Classical Problems of SynchronizationClassical Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

6.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bounded-Buffer ProblemBounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.

6.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bounded Buffer Problem (Cont.)Bounded Buffer Problem (Cont.)

 The structure of the producer process

 do {

 // produce an item

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 } while (true);

6.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bounded Buffer Problem (Cont.)Bounded Buffer Problem (Cont.)

 The structure of the consumer process

 do {

 wait (full);

 wait (mutex);

 // remove an item from buffer

 signal (mutex);

 signal (empty);

 // consume the removed item

 } while (true);

6.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers ProblemReaders-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any
updates

 Writers – can both read and write.

 Problem – allow multiple readers to read at the same time. Only
one single writer can access the shared data at the same time.

 Shared Data

 Data set

 Semaphore mutex initialized to 1.

 Semaphore wrt initialized to 1.

 Integer readcount initialized to 0.

6.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers Problem (Cont.)Readers-Writers Problem (Cont.)

 The structure of a writer process

 do {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 } while (true)

6.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers Problem (Cont.)Readers-Writers Problem (Cont.)

 The structure of a reader process

 do {
 wait (mutex) ;
 readcount ++ ;
 if (readercount == 1) wait (wrt) ;
 signal (mutex)

 // reading is performed

 wait (mutex) ;
 readcount - - ;
 if redacount == 0) signal (wrt) ;
 signal (mutex) ;
 } while (true)

6.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dining-Philosophers ProblemDining-Philosophers Problem

 Shared data

 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1

6.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dining-Philosophers Problem (Cont.)Dining-Philosophers Problem (Cont.)

 The structure of Philosopher i:

Do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (true) ;

6.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Problems with SemaphoresProblems with Semaphores

 Correct use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

6.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MonitorsMonitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

 Initialization code (….) { … }

…

}

}

6.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic view of a MonitorSchematic view of a Monitor

6.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Condition VariablesCondition Variables

 condition x, y;

 Two operations on a condition variable:

 x.wait () – a process that invokes the operation is

 suspended.

 x.signal () – resumes one of processes (if any) tha

 invoked x.wait ()

6.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Monitor with Condition VariablesMonitor with Condition Variables

6.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution to Dining PhilosophersSolution to Dining Philosophers

monitor DP
 {

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self [i].wait;
}

 void putdown (int i) {
 state[i] = THINKING;

 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);

 }

6.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution to Dining Philosophers (cont)Solution to Dining Philosophers (cont)

void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;

 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
}

}

6.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Synchronization ExamplesSynchronization Examples

 Solaris

 Windows XP

 Linux

 Pthreads

6.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris SynchronizationSolaris Synchronization

 Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from
short code segments

 Uses condition variables and readers-writers locks when longer
sections of code need access to data

 Uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or reader-writer lock

6.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XP SynchronizationWindows XP Synchronization

 Uses interrupt masks to protect access to global resources on
uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Also provides dispatcher objects which may act as either mutexes
and semaphores

 Dispatcher objects may also provide events

 An event acts much like a condition variable

6.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linux SynchronizationLinux Synchronization

 Linux:

 disables interrupts to implement short critical sections

 Linux provides:

 semaphores

 spin locks

6.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pthreads SynchronizationPthreads Synchronization

 Pthreads API is OS-independent

 It provides:

 mutex locks

 condition variables

 Non-portable extensions include:

 read-write locks

 spin locks

End of Chapter 6End of Chapter 6

